Project description:The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha (ERα), regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17β-estradiol (E2) by RNA-seq to obtain global expression profiles of protein coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2 and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2-regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.
Project description:To evaluate the ability of a DNA binding deficient ERa to mediate transcriptional responses in the mouse uterus, ovariectomized mice were injected with 100 ul of saline or 250 ng of estradiol (E2) in 100 ul saline, uterine tissue was collected 2 hours filllowing the injection, and RNA was isolated
Project description:Estrogen (E2) signaling through its nuclear receptor, estrogen receptor α (ERα) increases insulin-like growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor (IGF1R). Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs. growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using ChIP-seq. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.
Project description:Estrogen (E2) signaling through its nuclear receptor, estrogen receptor α (ERα) increases insulin-like growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor (IGF1R). Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs. growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using ChIP-seq. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.
Project description:Transcriptional responses of the CD-1 mouse strain following treatments with E2 or the short acting estrogen estriol (E3) were evaluated by microarray and compared to our previous profiles done in C57Bl6 mice. The pattern of response was similar in both strains, with early (2h) responses to E2 or E3 appearing very similar. The later (24h) response revealed that E2 exhibits a more robust response than E3, illustrating the short-acting nature of E3.
Project description:Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-Seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer–associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility, but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Project description:A major challenge in the emerging field of toxicogenomics is to define the relationships between chemically induced changes in gene expression and alterations in conventional toxicologic parameters such as clinical chemistry and histopathology. We have explored these relationships in detail using the rodent uterotrophic assay as a model system. Gene expression levels, uterine weights, and histologic parameters were analyzed 1, 2, 4, 8, 24, 48, and 72 hr after exposure to the reference physiologic estrogen 17 beta-estradiol (E2). A multistep analysis method, involving unsupervised hierarchical clustering followed by supervised gene ontology-driven clustering, was used to define the transcriptional program associated with E2-induced uterine growth and to identify groups of genes that may drive specific histologic changes in the uterus. This revealed that uterine growth and maturation are preceded and accompanied by a complex, multistage molecular program. The program begins with the induction of genes involved in transcriptional regulation and signal transduction and is followed, sequentially, by the regulation of genes involved in protein biosynthesis, cell proliferation, and epithelial cell differentiation. Furthermore, we have identified genes with common molecular functions that may drive fluid uptake, coordinated cell division, and remodeling of luminal epithelial cells. These data define the mechanism by which an estrogen induces organ growth and tissue maturation, and demonstrate that comparison of temporal changes in gene expression and conventional toxicology end points can facilitate the phenotypic anchoring of toxicogenomic data.
Project description:To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq, to identify estrogen receptor 1 (ER) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ER binding sites and >50 gene expression changes, representing a subset of E2‑induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ER binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ER binding site, but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ER on a genome-wide scale, although with lower potency resulting in less ER binding sites and less gene expression changes compared to the endogenous estrogen, E2.