Project description:Sex differences in liver gene expression are dictated by sex-differences in circulating growth hormone (GH) profiles. Presently, the pituitary hormone dependence of mouse liver gene expression was investigated on a global scale to discover sex-specific early GH response genes that might contribute to sex-specific regulation of downstream GH targets and to ascertain whether intrinsic sex-differences characterize hepatic responses to plasma GH stimulation. RNA expression analysis using 41,000-feature microarrays revealed two distinct classes of sex-specific mouse liver genes: genes subject to positive regulation (class-I) and genes subject to negative regulation by pituitary hormones (class-II). Genes activated or repressed in hypophysectomized (Hypox) mouse liver within 30-90min of GH pulse treatment at a physiological dose were identified as direct targets of GH action (early response genes). Intrinsic sex-differences in the GH responsiveness of a subset of these early response genes were observed. Notably, 45 male-specific genes, including five encoding transcriptional regulators that may mediate downstream sex-specific transcriptional responses, were rapidly induced by GH (within 30min) in Hypox male but not Hypox female mouse liver. The early GH response genes were enriched in 29 male-specific targets of the transcription factor Mef2, whose activation in hepatic stellate cells is associated with liver fibrosis leading to hepatocellular carcinoma, a male-predominant disease. Thus, the rapid activation by GH pulses of certain sex-specific genes is modulated by intrinsic sex-specific factors, which may be associated with prior hormone exposure (epigenetic mechanisms) or genetic factors that are pituitary-independent, and could contribute to sex-differences in predisposition to liver cancer or other hepatic pathophysiologies.
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Genome-wide expression analysis of two circadian oscillatory mechanisms in the mouse liver; To identify the genes of which the circadian expression is regulated by endogenous glucocorticoids, we performed DNA microarray analysis using hepatic RNA from adrenalectomized (ADX) and sham-operated mice. Mice were housed in a 12:12 h light-dark cycle (LD12:12; lights on at zeitgeber time (ZT) 0) for at least two weeks before the day of the experiment. Liver samples were dissected, quickly frozen, and stored in liquid nitrogen. Total RNA was purified from pools of 3 animal tissues collected at each time-point using ISOGEN (Nippon Gene Co., Ltd., Japan). Hybridization to Affymetrix GeneChip (MG-U74Av2) arrays proceeded as described (Oishi K et al., J Biol Chem, 278, 41519-41527, 2003). The average difference (AD) value for each gene was provided by GeneChip software. To identify putative glucocorticoid-regulated circadian genes, we compared AD values between two time points (ZT2 and ZT14) in sham operated and in ADX mice. We applied three criteria to the selection of putative glucocorticoid-regulated circadian genes: (i) the AD value is marked as âpresentâ by the GeneChip software in at least one of two time points, (ii) the AD value exhibits a 2-fold or greater change in sham-operated mice and (iii) the fold change is below 2-fold in ADX mice. We identified 169 genes that fluctuated between day and night in the livers of sham-operated mice. Among these, 100 lost circadian rhythmicity in ADX mice. On the other hand, the circadian expression of clock or clock-related genes such as mPer2 and DBP remained almost totally intact in the liver of ADX mice. The present study showed that the circadian expression of one type of liver genes in the mouse is governed by core components of the circadian clock such as CLOCK and BMAL1, and the other depends on endogenous glucocorticoids.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:BACKGROUND: Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes. RESULTS: Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time. CONCLUSIONS: All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.