Project description:Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts, and most of the novel SAGE tags have low copy numbers. Further analysis indicated that these novel SAGE tags represent novel low-abundant transcripts expressed from loci outside of currently annotated exons including the intergenic and intronic regions, and antisense of the currently annotated exons in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Keywords: other
Project description:Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts, and most of the novel SAGE tags have low copy numbers. Further analysis indicated that these novel SAGE tags represent novel low-abundant transcripts expressed from loci outside of currently annotated exons including the intergenic and intronic regions, and antisense of the currently annotated exons in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Keywords: other
Project description:The innate immune response of insects relies on several humoral and cellular mechanisms that require the activation of circulating proteases in the hemolymph to be functional. Here, we analyzed the gelatinase and caseinase activities of Drosophila larval hemolymph under normal and pathogenic conditions (bacterial lipopolysaccharides or endoparasitoid Leptopilina boulardi) using in gel zymography. Gelatinase activity was more intense than caseinase activity and qualitative and quantitative variations were observed between D. melanogaster strains and Drosophila species. Mass spectrometry identified a large number of serine proteases in gel bands equivalent to the major gelatinase and caseinase bands and of these, the most abundant and redundant were Tequila and members of the Jonah and Trypsin protease families. However, hemolymph from Tequila null mutant larvae showed no obvious changes in zymographic bands. Nor did we observe any significant changes in hemolymph gelatinases activity 24 h after injection of bacterial lipopolysaccharides or after oviposition by endoparasitoid wasps. These data confirmed that many serine proteases are present in Drosophila larval hemolymph but those with gelatinase and caseinase activity may not change drastically during the immune response.
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries