Project description:Oxidative stress is harmful for organism and occurs when the cells exposed to superoxid, hydrogen peroxide and alkylhydroperoxides. In microorganism, the glutathione- and thioredoxin-dependent reduction systems are universal and play an important role in response to defending oxidative stress. The _-glutamylcysteine synthetase (_-GCS) is an essential enzyme to biosynthesize the tripeptide glutathione (GSH) in organism. Similarly, thioredoxin reductase is an important enzyme in thioredoxin-dependent reduction system. In Clostridium acetobutylicum, the _-glutamylcysteine synthetase (encoded by CAC1539, gcs) and thioredoxin reductase (encoded by CAC1548, trxB) were inactivated using ClosTron technology. The gcs mutant grew insufficiently and consumed less glucose in the phosphate-limited continuous culture and exhibited more sensitive to oxidative stress. The trxB mutant just exhibited lower growth rate and less glucose uptake in the solventogenic phase, compared to wild type. The DNA microarrays were performed to investigate the transcripome difference between wild type and the mutants. In gcs mutant, the genes related to chemotaxis and flagella biosynthesis proteins were induced significantly and in the trxB mutant, the sporulation genes were induced largely. Based on the phenotypes and transcriptome comparison results, the relationship between GSH- and Trx-dependent induction systems was discussed in Clostridium acetobutylicum.
Project description:The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity.
Project description:The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity. Groups of assays that are related as part of a time series. Using regression correlation
Project description:The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity. Groups of assays that are related as part of a time series. Keywords: time_series_design
Project description:Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Experiment Overall Design: Transcriptome analyses on whole mouse livers.
Project description:Oxidative stress is experienced by all aerobic organisms and results in cellular damage. The damage caused during oxidative stress is particular to the oxidant challenge faced, and so too is the induced stress response. The eukaryote Saccharomyces cerevisiae is sensitive to low concentrations of the lipid hydroperoxide - linoleic acid hydroperoxide (LoaOOH) - and its response is unique relative to other peroxide treatments. Part of the yeast response to LoaOOH includes a change in the cellular requirement for nutrients, such as sulfur, nitrogen and various metal ions. The metabolism of sulfur is involved in antioxidant defence, although the role nitrogen during oxidative stress is not well understood. Investigating the response induced by yeast to overcome LoaOOH exposure, with a particular focus on nitrogen metabolism, will lead to greater understanding of how eukaryotes survive lipid hydroperoxide-induced stress, and associated lipid peroxidation, which occurs in the presence of polyunsaturated fatty acids. We used genome-wide microarrays to investigate the changes in gene expression of S. cerevisiae (Dal80Δ) to LoaOOH-induced oxidative stress.
Project description:Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Keywords: Triplicate comparisons, two conditions.
Project description:DKFZ-608 induces oxidative stress in the cytoplasm of treated cancer cell lines. The molecular reason for this is the inhibition of the cytoplamic thioredoxin reductase TRXR1. The EC50 of cytotoxicity differes substantialy in SCLC (hypersensitive) and NSCLC (resistant). The experiment aims to identify stress response pathways induced by the compound which could explain the cytotoxic activity of the compound and its differential effect.