Project description:To identify early events of erbB2-induced mammary tumorigenesis, we compared datasets from 14 genechip experiments including MMTV-neu tumors, preneoplastic neu mammary gland (adjacent neu), and age-matched, wild-type control mammary glands
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) overexpression on the gene expression profiles of tumors from MMTV-Neu mice. Hemizygous MMTV-Neu and MMTV-Spot14 mice were bred and 1 cm tumors from Neu control or Neu/Spot14 bitransgenic offspring were profiled using Affymetrix gene arrays. Tumors from Neu/Spot14 mice emerged significantly earlier than controls, but expressed many genes associated with lactogenic differentiation and were not highly metastatic. These results from the mouse model are consistent with observations from primary human breast tumors, which indicate that high Spot14 gene expression was directly correlated with a luminal subtype and a positive ER status. Overexpression of Spot14 in cultured mammary epithelial cells stimulated proliferation but not differentiation. Together, these data suggest that, in vivo, Spot14 is expressed in well-differentiated cells, and promotes the expansion of this population in the context of oncogenic signaling pathway activation. Microarray analysis was performed on 13 mammary tumors from MMTV-Neu mice and 9 tumors from MMTV-Neu/MMTV-Spot14 mice.
Project description:To identify genes that may facilitate early steps of ErbB2/Neu-mediated mammary tumorigenesis, we performed comparative microarray analysis of 5- and 10-week bitransgenic mammary glands (LHxMMTV-neu) in triplicate. Keywords: transgenic mouse, erbB2, MMTV-neu, HER2, mammary tumor, breast cancer
Project description:Murine models of mammary cancers have proven to be highly informative on numerous fronts including individual gene causation, microenvironmental analyses, and chemoprevention studies. The MMTV-Neu transgenic model of mammary cancer has proven to be a useful model and has been employed in several prevention studies. However, there are certain practical drawbacks to its use including long tumor latencies and a tendency to develop mutations in the transmembrane domain of Neu (unlike human HER2/Neu overexpressing breast cancers). Here we report modifications that were made in an attempt to optimize this mouse model for chemopreventive screening. First, homozygous MMTV-Neu and homozygous P53 KO mice were crossed to create a MMTV-Neu/P53+/- strain (which more closely approximates the genetic make-up of most HER2+ human patients). Second, to overcome the drawback of long tumor latencies, the mice were treated with DMBA for eight weeks. DMBA treatment greatly decreased the latency of mammary carcinomas in the MMTV-Neu mice although the resulting tumors remained histopathologically similar to those from MMTV-Neu control mice. Next, we examined gene expression in tumors derived from MMTV-Neu, MMTV-Neu/p53+/-, and DMBA treated mice. It was found that the characteristic MMTV-Neu tumor-defined expression pattern was still the most prevalent feature of all the MMTV-Neu tumors despite their being crossed to the p53 null allele, treated with DMBA, or both. However, tumors from the DMBA treated animals exhibited many unique gene expression changes including the high expression of stress response, defense, and inflammation genes. Finally, we demonstrated that the RXR agonists UAB30 and Targretin, both inhibited mammary cancer formation in MMTV-Neu mice, including those treated with DMBA. These results demonstrate the potential utility of this murine model for additional chemoprevention studies.
Project description:WAP-Cre:Ptenf/f:p53lox.stop.lox_R270H composite mice were generated by genetic crossing. In these mice, Pten is deleted and a R270H p53 mutation in the DNA binding domain is induced upon expression of Cre recombinase in pregnancy-identified alveolar progenitors. Tumors were characterized by histology, marker analysis, various bioinformatics methods, high-throughput (HTP) FDA-drug screen as well as orthotopic injection to quantify tumor initiating cells (TICs) and tail-vein injection to identify lung-metastasis. Expression data comparing 2 types of Pten-deficient tumors (spindle and poorly differentiated) with other modles of mouse mammary tumors 2 types of Pten deletion plus p53-R270H mutation tumors (spindle and poorly differentiated) was compared with MMTV-Neu, Spindle Pten-p53-deficient tumors, and wild-type mammary gland cells.
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism.
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) overexpression on the gene expression profiles of tumors from MMTV-Neu mice. Hemizygous MMTV-Neu and MMTV-Spot14 mice were bred and 1 cm tumors from Neu control or Neu/Spot14 bitransgenic offspring were profiled using Affymetrix gene arrays. Tumors from Neu/Spot14 mice emerged significantly earlier than controls, but expressed many genes associated with lactogenic differentiation and were not highly metastatic. These results from the mouse model are consistent with observations from primary human breast tumors, which indicate that high Spot14 gene expression was directly correlated with a luminal subtype and a positive ER status. Overexpression of Spot14 in cultured mammary epithelial cells stimulated proliferation but not differentiation. Together, these data suggest that, in vivo, Spot14 is expressed in well-differentiated cells, and promotes the expansion of this population in the context of oncogenic signaling pathway activation.
Project description:The objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism. Microarray analysis was performed on 4 mammary tumors from MMTV-PyMT mice and 4 tumors from MMTV-PyMT/S14-null mice.