Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF.
Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF. A dose response design type examines the relationship between the size of the administered dose and the extent of the response of the organism(s). Using regression correlation
Project description:Objective. Colchicine is an alkaloid that is used to alleviate acute gout and to prevent acute attacks of familial Mediterranean fever (FMF). However, it is not beneficial when given during the occurrence of an acute episode of FMF. It is believed that colchicine exerts its anti-inflammatory effect through direct interaction with microtubules. We aim to study the molecular basis of colchicine action by analysing the effect of this drug on global gene expression of HUVEC (human umbilical vein endothelial cell line) cells. Methods. HUVEC cells were exposed to various concentrations of colchicine and were harvested at different time points. Ribonucleic acid was extracted, amplified, reverse transcribed and hybridized to complementary deoxyribonucleic acid microarrrays containing more than 40,000 probes to human expressed sequence tags. This approach enabled us to have a global look at the transcriptional response induced by colchicine treatment. Results. Colchicine changed the expression of many genes in HUVEC cells following exposure to a concentration of 100 ng/ml or higher. Following short exposure (30 or 120 min), colchicine affected genes known to be involved in the cell cycle and its regulation. However, change in expression of genes involved in neutrophil migration or other inflammatory processes were observed mainly after 12 to 24 h. Conclusions. The anti-inflammatory effect of colchicine may be mediated not only through direct interaction with microtubules but also through changes at the transcriptional level. This latter effect apparently requires a higher concentration and a longer time to occur. This can explain the observation that colchicine does not have an immediate effect when given during an acute attack of FMF. A dose response design type examines the relationship between the size of the administered dose and the extent of the response of the organism(s). Keywords: dose_response_design
Project description:Colchicine is an alkaloid found in the plant Colchicum, which is currently used for the treatment of acute gout and familial Mediterranean fever, and is being considered for the treatment of a variety of cardiovascular diseases such as pericarditis, atrial fibrillation, and coronary syndromes due to its significant anti-inflammatory effects. Aortic dissection is a cardiovascular disease characterised by a tear in the intima and congestion of the vessel wall leading to vessel wall delamination, with a rapid onset and high lethality. This study investigated the role of colchicine in BAPN-induced aortic dissection in mice. Gavage administration of colchicine along with BAPN modelling for three weeks showed a significant decrease in morbidity and mortality, indicating that colchicine can inhibit the occurrence of aortic dissection in mice.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Doxorubicin (DOX) cardiotoxicity is an important factor of heart failure. The only clinically approved drug is dexrazoxane, while its side effect of secondary malignancies severely limited its application. It is urgent to find other alternative efficacious molecular for these chemotherapy patients. Colchicine is a safe and well tolerated anti-inflammation drug which also functions in attenuating the reactive oxygen species (ROS) generation. High dose of colchicine was reported block the autophagosome-lysosome fusion in cancer cells due to its destabilization effect to the microtubule system, while how colchicine affects the autophagic flux in cardiomyocytes is largely unknown. Recent years low dose of colchicine administration was reported helpful to the patients with pericarditis, postprocedural atrial fibrillation and coronary artery disease, most of the research attributed it to its anti-inflammation effect. Whether the autophagic flux regulated by colchicine also benefits to DOX induced heart failure remains unclear. Doxorubicin (DOX) administration was used to establish heart failure models in vivo and in vitro. Results showed that DOX blocked the autophagic vacuoles degradation, leading to damaged mitochondria and ROS accumulation. Heart failure characteristics were obviously improved after low dose of colchicine administration. Mechanistically, low dose of colchicine promoted the autolysosome degradation, cleared the damaged mitochondria, and ROS accumulation induced by the DOX and as a result attenuated DOX cardiotoxicity.