Project description:Gene expression profiles of CD34+CD38- stem cells and more differentiated CD34+CD38+ progenitor cells were compared. Comparison of expression profiles of hematopoietic stem cells from fetal liver, umbilical cord blood, bone marrow and mobilized pheripheral blood allowed us to identify a unique set of genes with conserved expression during ontogeny. Keywords: Cell type comparison
Project description:Gene expression profiles of CD34+CD38- stem cells and more differentiated CD34+CD38+ progenitor cells were compared. Comparison of expression profiles of hematopoietic stem cells from fetal liver, umbilical cord blood, bone marrow and mobilized pheripheral blood allowed us to identify a unique set of genes with conserved expression during ontogeny. Experiment Overall Design: CD34+CD38- en CD34+CD38+ cell populations were isolated by cell sorting from human Bone Marrow, mobilized peripheral blood, umbilical cord blood and fetal liver. Total RNA was isolated from each cell population followed by the synthesis of biotinylated cRNA. After fragmentation the biotinylated cRNA was hybridized to affymetrix U133A chips.
Project description:One of the long-standing goals in the field has been to establish a culture system that would allow maintenance of HSC properties ex vivo. In the absence of such system, the ability to model human hematopoiesis in vitro has been limited, and there has been little progress in the expansion of human HSCs for clinical application. To that end, we defined a mesenchyml stem cell co-culture system for expansion of clonally multipotent human HSPCs that are protected from apoptosis and immediate differentiation, and retain the HSPC phenotype. By performing a genome-wide gene expression analysis of purified HSPCs isolated at different stages of co-culture, we asked at the molecular level, to what degree hematopetic stem cell properties can be preserved during culture. This temporal gene expression data from in vivo derived- and ex vivo expanded human HSPCs will serve as a resource to identify novel regulatory pathways that control HSC properties, and to develop clinically applicable protocols for HSC expansion. Human CD34+ fetal liver cells were co-cultured on a subclone of OP9 stomal cells (OP9M2 sublemented with supportive cytokines (see below)). To distinguish between molecular changes acquired over prolonged culture versus immediately after exposure to culture, gene expression in isolated CD45+CD34+CD38-CD90+ HSPCs was assessed after 12 hours, 2 weeks and 5 weeks in culture. Cultured CD45+CD34+CD38-CD90+HSPCs were compared to freshly isolated CD45+CD34+CD38-CD90+HSPCs and their more differentiated CD45+CD34+CD38+CD90- downstream progenitor cells.
Project description:The global gene expression profiles of human umbilical cord blood and adult bone marrow CD34+CD33-CD38-Rho(lo)c-kit+ cells, enriched for hematopoietic stem/progenitor cells (HSC) with CD34+CD33-CD38-Rho(hi) cells, enriched in committed hematopoietic progenitor cells (HPC), were compared to identify candidate regulators of HSC self-renewal versus differentiation fate decisions.
Project description:The global gene expression profiles of human umbilical cord blood and adult bone marrow CD34+CD33-CD38-Rho(lo)c-kit+ cells, enriched for hematopoietic stem/progenitor cells (HSC) with CD34+CD33-CD38-Rho(hi) cells, enriched in committed hematopoietic progenitor cells (HPC), were compared to identify candidate regulators of HSC self-renewal versus differentiation fate decisions. Keywords: parallel sample
Project description:This is a mathematical model describing the hematopoietic lineages with leukemia lineages, as controlled by end-product negative feedback inhibition. Variables include hematopoietic stem cells, progenitor cells, terminally differentiated HSCs, leukemia stem cells, and terminally differentiated leukemia stem cells.
Project description:We applied a novel approach of parallel transcriptional analysis of multiple, highly fractionated stem and progenitor populations from patients with acute myeloid leukemia (AML) and a normal karyotype. We isolated phenotypic long-term HSC (LT-HSC), short-term HSC (ST-HSC), and committed granulocyte-monocyte progenitors (GMP) from individual patients, and measured gene expression profiles of each population, and in comparison to their phenotypic counterparts from age-matched healthy controls. Bone marrow samples from AML patients with normal karyotype and age-matched healthy controls were used in this study. Hematopoietic stem and progenitor compartments were purified by multiparameter-high speed fluorescence-activated cell sorting (FACS) from CD34+ enriched bone marrow to isolate LT-HSC (Lin-/CD34+/CD38-/CD90+), ST-HSC (Lin-/CD34+/CD38-/CD90-), and GMP (Lin-/CD34+/CD38+/CD123+/CD45R+).