Project description:For transcript analysis of aluminum tolerance responses in Medicago truncatula (A17) we compared transcripts from 2.5 µM Al-treated and control (-Al) root tips corresponding to 12 h after Al treatment. Keywords: One time point and one genotype
Project description:For transcript analysis of aluminum tolerance responses in Medicago truncatula we compared transcripts from 2.5 µM Al-treated and control (-Al) root tips corresponding to 12 and 48 h after Al treatment in Al-tolerant (T32) and Al-sensitive (S70) lines. Keywords: 2 time points and 2 lines
Project description:For transcript analysis of responses in Medicago truncatula to its symbiont Sinorhizobium meliloti wild type or the succinoglycan-deficient exoY mutant we compared transcripts from line A17 roots inoculated with 25 mL OD = 0.05 S. meliloti wild type or exoY mutant. Keywords: 1 line; 2 S. meliloti samples
Project description:we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively.
Project description:affy_ralstonia_medicago - Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease. Its infection process was studied with an in vitro inoculation procedure on intact roots of Medicago truncatula. The pathosystem involved susceptible A17 and resistant F83005.5 M truncatula lines infected with the pathogenic strain GMI1000. The mutant A17 line, Sickle, which showed a resistant phenotype was also part of the experiment. To identify host signaling pathway triggered by R. solanacearum infection with a focus on the involvment of ethylene, we used the Medicago Affymetrix array to monitore the expression profiles and the molecular process associated with initial symptoms development (12hpi) and colonization (72hpi). In order to maximize chances to observe differential gene expression, RNA samples were extracted from the root infection zone (root tips) -Three Medicago truncatula lines, A17, F83005.5 and sickle were inoculated with GMI1000 Ralstonai solanacearum strain (107 cfu/ml). RNA were extracted from root extremities (1 cm above the root tip) at time 0, 12h and 72h post inoculation. Three biological repeats were conducted
Project description:For transcript analysis of early hypersensitive and susceptible responses of Medicago truncatula to the powdery mildew pathogen, Erysiphe pisi, we compared transcripts from pathogen-inoculated and control (non-inoculated) plants 12 h after infection in resistant (A14), partially resistant (A20), and susceptible (DZA315.16) genotypes. Published in: Medicago truncatula to the powdery mildew 1 and anthracnose pathogens, Erysiphe pisi and Colletotrichum trifolii. Molecular Plant Pathology 8(3):307-319 Keywords: 1 time points and 3 genotypes
Project description:The root-infecting necrotrophic fungal pathogen Rhizoctonia solani causes significant disease to all the world’s major food crops. As a model for pathogenesis of legumes we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major transcriptional reprogramming early in A17. Responses specific to A17 included components of ethylene signalling, numerous class IX ERF transcription factor family members, reactive oxygen species metabolism and consistent up-regulation of the isoflavonoid biosynthesis pathway. Mass-spectrometry revealed accumulation of the isoflavonoid related compounds liquiritigenin, formononetin, medicarpin and biochanin A in A17. Over-expression of an isoflavone synthase (IFS) in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defence against root pathogens in legumes.