Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:Polychlorinated biphenyls (PCBs) exposure disrupts steroid production in teleostean fishes. While this suppression of plasma steroid levels is thought to involve aryl hydrocarbon receptor (AhR) signaling, the target tissues impacted and the molecular mechanisms involved have rarely been addressed. We tested the hypothesis that AhR activation downregulates genes involved in neuroendocrine function, including the control of brain-pituitary-interrenal (BPI) and -gonadal (BPG) axes in rainbow trout. To elucidate receptor-specific signaling, we utilized a pharmacological approach using beta-naphthoflavone (BNF) and resveratrol (RVT) as AhR agonist and antagonist, respectively. The gene expression pattern in the brain was analysed using a low-density targeted trout cDNA array enriched with genes encoding proteins involved in endocrine signaling, stress response and metabolic adjustments. Upregulation of AhR and CYP1A1 gene expression with BNF and the inhibition of this response by RVT confirmed AhR-dependent signaling. RVT by itself impacted only a few genes, while BNF treatment significantly modulated the transcript level of 49 genes, many of which are involved in the neuroendocrine control of stress and reproduction. Of these, only 27% of the BNF-mediated transcriptional response was blocked by RVT, suggesting molecular regulation of neuroendocrine pathways that are also AhR-independent. Gene expression pattern for select genes seen with the microarray analysis was also confirmed using quantitative real-time PCR. Overall, our results reveal for the first time that BNF disrupts several key genes involved in the neuroendocrine control of stress and sex steroid biosynthesis, while the mode of action involves both AhR-dependent and -independent pathways in trout. Keywords: Aryl hydrocarbon receptor, rainbow trout, brain transcriptomics, resveratrol, beta-naphthoflavone
Project description:Infectious hematopoietic necrosis virus (IHNV) can cause widespread death of rainbow trout (Oncorhynchus mykiss), understanding the molecular mechanisms that occur in the rainbow trout in response to IHNV infection will be useful to decrease IHN-related morbidity and mortality in trout aquaculture. However, the molecular mechanisms of rainbow trout in response to IHNV are very limited. This study performed analysis of mRNAs and miRNAs based on RNA-seq technology on the intestine of rainbow trout infected with IHNV and control. There were 80 differentially expressed miRNAs that regulated 3355 target mRNAs, which overlapped with differentially expressed mRNAs obtained from RNA-seq. The expression patterns of DEGs and miRNAs differentially expressed were validated by qRT-PCR. GO enrichment and KEGG pathway analyses of the potential target genes of the DE miRNAs, revealed DEGs were mainly enriched in immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and IL-17 signaling pathway. These findings improve our understanding of the molecular mechanisms of IHNV infection. The study analyzed the immune regulatory target gene pairs and signal pathways of rainbow trout intestine against IHNV infection at the transcriptional level, and provided basic data for the study of rainbow trout against IHNV immune regulatory.
Project description:Infectious hematopoietic necrosis virus (IHNV) can cause widespread death of rainbow trout (Oncorhynchus mykiss), understanding the molecular mechanisms that occur in the rainbow trout in response to IHNV infection will be useful to decrease IHN-related morbidity and mortality in trout aquaculture. However, the molecular mechanisms of rainbow trout in response to IHNV are very limited. This study performed analysis of mRNAs and miRNAs based on RNA-seq technology on the intestine of rainbow trout infected with IHNV and control. There were 80 differentially expressed miRNAs that regulated 3355 target mRNAs, which overlapped with differentially expressed mRNAs obtained from RNA-seq. The expression patterns of DEGs and miRNAs differentially expressed were validated by qRT-PCR. GO enrichment and KEGG pathway analyses of the potential target genes of the DE miRNAs, revealed DEGs were mainly enriched in immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and IL-17 signaling pathway. These findings improve our understanding of the molecular mechanisms of IHNV infection. The study analyzed the immune regulatory target gene pairs and signal pathways of rainbow trout intestine against IHNV infection at the transcriptional level, and provided basic data for the study of rainbow trout against IHNV immune regulatory.
Project description:Stocking density is considered as a key factor determining the productivity of fish aquaculture systems. The transcriptomic response to crowding stress is, however, still poorly investigated. We aimed at the identification of potential biomarker genes via microarray analyses to get insight into molecular pathways modulated through density-induced stress in farmed rainbow trout Oncorhynchus mykiss. Transcriptome profiling in liver, kidney, and gills was complemented with behaviarol observation and analysis of classical plasma parameters. Individuals of two trout strains were exposed for eight days to definite stocking densities, 1 kg/m³ (low density); 10 kg/m³ (moderate); 18 kg/m³ (elevated); and 35 kg/m³ (high). Whereas stocking density had no significant effect on cortisol levels, plasma glucose levels were elevated in trout kept at high density. Pathway enrichment analyses confirmed the upregulation of HIF1a signaling in liver contributing to glucose homeostasis during stress conditions, while mTOR and PI3K/AKT signaling pathways were downregulated. Further perturbed hepatic pathways were involved in protein ubiquitination and the biosynthesis of cholesterol, retinol and glutathione. Three stocking density conditions were investigated: an uncrowded âmoderateâ density (MD: 10 kg trout/m³) , an elevated density (ED: 18 kg/m³ ), and high density (HD: 35 kg/m³). The experiment was performed twice with two strains of Steelhead rainbow trout (Troutlodge and Born trout), randomly assigned to identical glass tanks with MD (30 and 34 individuals), ED (60 and 64 individuals), and HD (120 and 140 individuals). Trout were sampled 8 d after experimental onset.
Project description:Rainbow trout (Oncorhynchus mykiss) is one of the economically important cold-water fish cultivated in the world. The outbreak of infectious hematopoietic necrosis (IHN) seriously restricted the development of rainbow trout farming industry and caused huge economic losses. Fish skin is the largest mucosal immune organ, providing the first line of defense against pathogen invasion. However, the immune mechanisms associated with fish skin remain unclear. To systematically identify skin mucosal immune genes induced by infectious hematopoietic necrosis virus (IHNV) infection, trout transcriptome profiles following IHNV challenge were examined. Transcriptome analysis identified 6905 differentially expressed genes (DEGs) and revealed numerous immune-related DEGs involved in cytokine-cytokine receptor interactions, NOD-like receptor signaling, RIG-I-like receptor signaling, Toll-like receptor signaling, JAK-STAT signaling, Chemokine signaling pathway, and TNF signaling pathway, and the expression of these DEGs was significantly up-regulated in T48Skm group, including NOD1, NLRC3, NLRC5, TLR3, TLR7/8, TRIM25, DHX58, IFIH1, IRF3/7, STAT1, TRAF3, MX1, and HSP90A1. Additionally, highly interactive DEGs network involving immune-related terms and pathways was shown using protein-protein interaction network. The expression patterns of 12 DEGs were further verified by quantitative real-time PCR, which confirmed the reproducibility and reliability of transcriptome sequencing data. These findings expand our understanding of the innate immune system of rainbow trout skin infected with IHNV, and lay a foundation for further studies of the immune molecular mechanism and disease resistance breeding.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:Rainbow trout (Oncorhynchus mykiss) is a typical cold-water fish, the development of rainbow trout aquaculture was severely hampered via the high temperature in summer. Understanding the regulatory mechanism of rainbow trout response to chronic heat stress can provide a theoretical basis for formulating measures to relieve heat stress. In the study, changes in the biochemical parameters revealed that a strong stress response occurred in rainbow trout at 24 °C, the organisms stress defense system was activated, and the immune system was also affected. Proteome of rainbow trout liver tissues under heat stress (24 °C) and control conditions (18 °C) were performed using DIA/SWATH. A total of 390 DEPs were identified by strict threshold (q-value <0.05 and fold changes >1.5), among them 175 were up-regulated and 225 were down-regulated. Some proteins related to HSP, metabolism and immunity were identified. GO analysis showed that some proteins that were highly induced to express at high temperature were involved in the regulation of cell homeostasis, metabolism, adaptive stress and stimulation. KEGG analysis shows that some pathways play an important role in the regulation of heat stress, such as metabolic pathway, protein processing in endoplasmic reticulum pathway, PPAR signaling pathway and complement and coagulation cascades pathway, etc. PPI network analysis shows HSP90b1 and C3 maybe cooperative to protect the integrity of cell membrane function under heat stress. Our finding provide a comprehensive review of protein expression of rainbow trout liver under heat stress, which helps to formulate strategies for rainbow trout to relieve heat stress during high temperature in summer.
Project description:Rainbow trout is a typical cold-water fish, with the intensification of global warming, high temperatures severely restrict the development of aquaculture in summer. Understanding the molecular regulation mechanisms of rainbow trout in response to heat stress will be salutary to alleviate heat stress-related damage. In the present study, we performed transcriptome analysis of liver tissues in rainbow trout under heat stress (24℃) and control (18℃) conditions to identify induced lncRNAs and pathways by heat stress. More than 658 million clean reads and 5,916 lncRNAs were identified from six liver libraries. A total of 927 novel lncRNAs were generated and 428 differentially expressed lncRNAs were screened through stringent thresholds. The RNA-seq results were verified by RT-qPCR. In addition, the regulatory network of important functional lncRNA-mRNA were constructed. GO and KEGG enrichment analysis of target gene of differentially expressed lncRNAs were performed. Many target genes involved in maintaining homeostasis or adapting to stress and stimuli were highly induced under heat stress. Several important regulatory pathways were involved in heat stress, including thyroid hormone signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway, etc. This result broadens our understanding of lncRNA associated with heat stress and provides new insights into lncRNA-mediated regulation of rainbow trout heat stress.