Project description:Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens. Experiment Overall Design: LARK-containing ribonucleoprotein complexes (LARK-RNPs) were precipitated from lysates of hand-dissected pharate adult brains using an affinity-purified anti-LARK antibody (around 1000 brains were used per immunoprecipitation experiment). A portion of each lysate was saved prior to immunoprecipitations (IPs) in order to measure the relative abundance of transcripts in a total RNA sample. RNAs extracted from the LARK-RNP and total RNA samples were labeled and hybridized to Drosophila whole-genome gene microarrays; signal intensities for individual genes were compared between samples to identify those RNAs that were enriched by immunoprecipitation (relative to their abundances in total RNA). RNAs that were selectively enriched in the LARK-RNP samples were considered to be potential targets of the RNA-binding protein. Experiment Overall Design: Due to the difficulty to dissect large amount of fly brains, only two such immunoprecipitation experiments were performed, each generating an IP RNA sample and a total RNA (control) sample. The amount of RNAs obtained from IP is very small thus only one array is used for each sample - i.e. there are only biological replicates and no technical replicate.
Project description:Circadian behaviors are regulated by intrinsic biological clocks consisting of central molecular oscillators and output pathways. Despite significant progress in elucidating the central timekeeping mechanisms, the molecular pathways coupling the circadian pacemaker to overt rhythmic behavior and physiology remain elusive. The Drosophila LARK RNA-binding protein is a candidate for such a coupling factor. Previous research indicates that LARK functions downstream of the clock to mediate behavioral outputs. To better understand the roles of LARK in the Drosophila circadian system, we sought to identify RNA molecules associated with LARK in vivo, using a novel strategy that involves capturing the RNA ligands by immunoprecipitation, visualizing the captured RNAs using whole gene microarrays, and identifying functionally relevant targets through genetic screens. Keywords: Association with RNA-binding protein
Project description:The goal of this study is to identify, in the head of adult flies, mRNA species whose expresson level are altered by overexpression of the Drosophila RNA-binding protein LARK in CNS neurons. Experiment Overall Design: RNA samples from adult head of the LARK overexpression flies (elav-gal4; uas-lark/+) and control flies were compared. One total RNA sample was isolated from each genotype, of which three technical replicates (repeating the labeling and hybridization processes) were generated, respectively.
Project description:To understand gene expression changes in different regions of the Drosophila brain with age, we performed RNAseq different regions of the adult drosophila CNS at different ages.
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs from imaginal disc / brain, female body and male body. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH Keywords: small RNA discovery and profiling For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Small RNAs were sequenced from D. melanogaster adult bodies. Raw sequences were clipped by 3' linker sequences recognition, and select clipped sequences longer than 18 nt.
Project description:microRNAs (miRNAs) are a class of small non-coding RNAs involved in the coordination and/or fine-tuning of gene expression. As such, miRNAs are thought to be critical cis-acting regulatory factors that control a wide range of physiological processes in the brain. The datasets presented here represent the miRNA transcriptome of the adult and larval Drosophila melanogaster CNS as determined by small RNA deep sequencing (RNA-Seq). They were derived from adult and larval samples explanted from the animal that contain minimal extraneous (non-neuronal) tissues. Here we present a concise summary of our profiling results as well as the original sequencing data. We identify many miRNAs that are expressed at equal levels in both tissues and several that are significantly enriched in the larval and adult brain. Some of these belong to miRNA families with conserved members in mammals. These datasets should provide a good starting point for others interested in characterizing miRNAs with putative functions in Drosophila neurons.
Project description:High-throughput sequencing of Drosophila melanogaster small RNAs from imaginal disc / brain, female body and male body. total RNA, ~18-26nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH Keywords: small RNA discovery and profiling For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf