Project description:Gene expression profiling in homozygous LMNA-/- mouse model with cardiomyopathy phenotype unraveled novel LMNA-mediated alterations of signaling pathways leading to dilated cardiomyopathy
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy. We utilized a previously established CAG-S-COUP-TFII allele and crossed it with the Myh6-MerCreMer (Myh6-MCM) line to overexpress COUP-TFII specifically in cardiomyocytes at two months of age by administration of tamoxifen. The experimental group has genotype of Myh6-MCM; CAG-S-COUP-TFII while the control group consists of Myh6-MCM mice (Figure 1C). Whole ventricles were harvested 16 days post induction for molecular profiling.
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy.
Project description:Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Lysine demethylase 8 (Kdm8) represses gene expression in the embryo and controls metabolism in cancer. However, its function in cardiac homeostasis is unknown. We show that Kdm8 maintains a mitochondrial gene network active by repressing Tbx15 to prevent dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiates. Moreover, NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration towards heart failure and could underlie heterogeneity of dilated cardiomyopathy.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Lysine demethylase 8 (Kdm8) represses gene expression in the embryo and controls metabolism in cancer. However, its function in cardiac homeostasis is unknown. We show that Kdm8 maintains a mitochondrial gene network active by repressing Tbx15 to prevent dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiates. Moreover, NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration towards heart failure and could underlie heterogeneity of dilated cardiomyopathy.