IFI16-mediated suppression of HSV-1 protein expression
Ontology highlight
ABSTRACT: Human cells identify invading pathogens and activate immune signaling pathways through a wide array of pattern recognition receptors, such as DNA sensors. The interferon-inducible protein 16 (IFI16) is a nuclear DNA sensor that recognizes double-stranded DNA from a number of viral sources, including genomes of nuclear-replicating viruses such as the prevalent human pathogen, herpes simplex virus 1 (HSV-1). Upon binding to the DNA genome of HSV-1, IFI16 both induces antiviral cytokine expression and suppresses virus gene expression. Here, we use a multi-omics approach of DNA sequencing techniques paired with targeted mass spectrometry to obtain an extensive view of the interaction between IFI16 and the HSV-1 genome, and how this binding affects the viral DNA structure and protein expression. Through ChIP-seq, we find that IFI16 binds to the HSV-1 genome in a sequence-independent manner while simultaneously exhibiting broad enrichment at two loci: UL30, the viral DNA polymerase gene, and US1-US7. ATAC-seq analysis reveals that these two regions are among the most accessible stretches of DNA on the genome, thereby facilitating IFI16 binding. Accessibility of the entire HSV-1 genome is elevated upon IFI16-KO, indicating that expression of IFI16 globally induces chromatinization of viral DNA, regardless of IFI16 enrichment. Deletion of IFI16 also results in a global increase in the expression of HSV-1 proteins, as measured by parallel reaction monitoring-mass spectrometry. Altogether, we demonstrate that IFI16 interacts with the HSV-1 genome in a sequence-independent manner, and this interaction coordinates epigenetic silencing of the viral genome, resulting in decreased protein expression and virus replication.
ORGANISM(S): Homo Sapiens Human Alphaherpesvirus 1
SUBMITTER: Tim Howard
PROVIDER: PXD031850 | panorama | Wed Apr 27 00:00:00 BST 2022
REPOSITORIES: PanoramaPublic
ACCESS DATA