Project description:Cultured cell lines are widely used for research in the physiology, pathophysiology, toxicology and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend on the genes expressed. New tools for transcriptomic and proteomic profiling using RNA-sequencing (RNA-Seq) and mass spectrometry make it possible to catalog expressed genes in each cell line. This data set is the protoemic data of Rat NRK-52E cell line. We concludeno cell line fully matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.
Project description:Purpose:Cultured cell lines are widely used for research in the physiology, pathophysiology, toxicology and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend on the genes expressed.We have used modern RNA-sequencing techniques to identify the gene expression profile of 14 different cell lines plus primary cultures of mouse proximal tubule and compare them to transcriptomes of native kidney proximal tubules. Methods: 14 different proximal tubule cell lines were grown on permeable supports under conditions specific for the respective lines. RNA-Seq followed standard procedures. Results and conclusion: Transcripts expressed in cell lines showed variable match to transcripts selectively expressed in native proximal tubule. Opossum kidney (OK) cells displayed the highest percentage match (45%) with pig kidney cells (LLC-PK1) close behind (39%). Much lower percentage matches were seen for various human lines including HK-2 cells (26%) and lines from rodent kidneys (18-23%).An online resource (https://esbl.nhlbi.nih.gov/JBrowse/KCT/) has been created for interrogation of the data.No cell line closely matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.
Project description:Loss of a kidney results in compensatory growth of the remaining kidney, a phenomenon of considerable clinical importance. However, the mechanisms involved are largely unknown. Here, we used a multi-omic approach in a mouse unilateral nephrectomy model to identify signaling processes associated with compensatory hypertrophy of the renal proximal tubule. Morphometry applied to microdissected proximal tubules showed that growth of the proximal tubule involves a marked, rapid increase in cell volume rather than cell number. Measurements of DNA accessibility (ATAC-seq), transcriptome (RNA-seq) and proteome (quantitative protein mass spectrometry) independently identified patterns of change that are indicative of activation of the lipid-regulated transcription factor, PPARα. Activation of PPARα by fenofibrate administration increased proximal tubule cell size, while genetic deletion of PPARα in mice decreased it. The results indicate that PPARα is an important determinant of proximal tubule cell size and is a likely mediator of compensatory proximal tubule hypertrophy.
Project description:Dent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys. Overall 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared to those of control wild type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease. Experiment Overall Design: Renal proximal tubules were dissected from wild type and Clcn5 knockout mice. Mice were anesthetized with halothane, the abdominal aorta of each animal was accessed and the left kidney was perfused with an ice-cold salt. Proximal tubule dissection was performed in an ice-cold salt solution. After dissection of approximately 80-100 segments of 2 mm in length per kidney, the RNA for 3-4 mice was combined to have enough RNA per chip. Experiment Overall Design: 3 microarrays each of wild type and knockout mouse proximal tubule were processed
Project description:Here we investigated the transcriptomic changes induced by oleic acid treatment on human Primary Renal Proximal Tubule Epithelial Cells (RPTECs) with RNA-seq. We also profiled cells with oleic acid treatment after PLIN2 gene knockdown with siRNA treatment.
Project description:Peroxisomes are highly abundant in proximal tubules where peroxisomal enzymes have been proposed to play an important role in a variety of metabolic and antioxidant functions. This hypothesis was supported by human genetic studies that identified mutations leading to peroxisomal biogenesis deficiency, resulting in severe multi-organ damage (Zellweger’s spectrum disorders (ZSD)), including renal impairment. However, the role of proximal tubule peroxisomes in renal (patho)physiology remains uninvestigated. We addressed this question in mice with conditional ablation of peroxisomal biogenesis in the renal tubule. Our results demonstrate that renal tubular peroxisomes are dispensable for normal renal function and suggest that renal damage in ZSD patients is of extrarenal origin.
Project description:This experiment was carried out to investigate the time dynamics of the proximal tubule cells upon the exposure of cyclosporine A in multiple severity scenario by varying the concentration. The RPTEC/TERT1 cells which are immortalized human proximal tubule cells were differentiated for 14 days to reach the optimal maturity where the cells express the proximal tubule markers and transporter similarly to human proximal tubule cells. The cells were then exposed to cyclosporine A at multiple concentration levels ranging from 0-40 uM for 4, 8,16, 24,48, and 72 hours. The cells were lysed and the lysates were collected for high throughput targeted RNA-seq with the human whole genome library. The gene expression profiles were analyzed to identify the modulated responses of the cells. This is part of the TransQST project.
Project description:Global gene expression in the primary cultured mouse kidney proximal tubule cells treated either DMSO or 1uM GW4064 (a FXR agonist) was compared. Results provide insight into mechanisms underlying effects of FXR activation on gene expression in mouse kidney proximal tubule cells. Male C57/BJ mice aged 6 weeks were sacrificed under anesthesia and kidney proximal tubule cells were cultured until confluent. Cells were treated with either GW4064 (1uM) or equal amount of DMSO and incubated for 24 hours. 4 total RNA samples per group were analyzed and gene expression was compared between the groups.