Project description:Silkworms show a reproductive behavior induced by sex pheromone. To elucidate the neral mechanism of sex pheromone induced sexual behavior in the silkworm, we attempted to use the neural activity-induced gene as a neural activity marker. Since no neural activity-induced gene was identified in the silkworm, we conducted screening of neural activity-induced gene using the male silkworm brain. By the screening, we identified Bhr38 as a novel neural activity-induced gene, and succeded to comprehensively map the active neruons in the silkworm brain in response to the sex pheromone exposure. Further, we found that Dhr38, the Drosophila homologue of Bhr38, also expressed in a neural activity dependent manner. These results strongly suggest that Hr38 is a highly conserved neural activity-induced gene. The male silkworms were exposed to the female odor for 30 min (group P). Non-treated male silkworms were used as the control group group C. Ten brains were collected for each sample and stored at -80°C until use. Total RNA was isolated by the TRIzol reagent and subjected to microarray experiments using the custam made (8x16k) Oligo Microarray (Agilent Technologies, Inc.).
Project description:Silkworms show a reproductive behavior induced by sex pheromone. To elucidate the neral mechanism of sex pheromone induced sexual behavior in the silkworm, we attempted to use the neural activity-induced gene as a neural activity marker. Since no neural activity-induced gene was identified in the silkworm, we conducted screening of neural activity-induced gene using the male silkworm brain. By the screening, we identified Bhr38 as a novel neural activity-induced gene, and succeded to comprehensively map the active neruons in the silkworm brain in response to the sex pheromone exposure. Further, we found that Dhr38, the Drosophila homologue of Bhr38, also expressed in a neural activity dependent manner. These results strongly suggest that Hr38 is a highly conserved neural activity-induced gene.
Project description:Neuronal activity-dependent gene expression plays important roles in neural plasticity. We use electroconvulsive stimulation (ECS) as an in vivo model for neuronal activation to identify genes that are regulated by neuronal activity. Dentate gyri (DG) were microdissected 4 hours after sham or ECS treatment for gene expression profiling. 4 total samples were analysed (2 for each condition). Averaged expression values between sham and ECS samples were pair-wise compared.
Project description:Neuronal activity-dependent gene expression plays important roles in neural plasticity. We use electroconvulsive stimulation (ECS) as an in vivo model for neuronal activation to identify genes that are regulated by neuronal activity. Dentate gyri (DG) were microdissected 4 hours after sham or ECS treatment for gene expression profiling.
Project description:Human induced pluripotent stem cells (hiPSCs) have emerged as a promising in vitro model system for studying neurodevelopment. However, current models remain limited in their ability to incorporate tunable biochemical and biomechanical signaling cues imparted by the neural extracellular matrix (ECM). The native brain ECM is viscoelastic and stress-relaxing, exhibiting a time-dependent response to an applied force. To recapitulate the remodelability of the neural ECM, we developed a family of protein-engineered hydrogels crosslinked with either static or dynamic covalent bonds that exhibit tunable stress relaxation rates. hiPSC-derived neural progenitor cells (NPCs) encapsulated within these gels underwent relaxation rate-dependent maturation. Specifically, NPCs within hydrogels with faster stress relaxation rates extended longer, more complex neuritic projections, exhibited decreased metabolic activity, and expressed higher levels of genes associated with neural maturation. By inhibiting actin polymerization, we observed decreased neuritic projections and a concomitant decrease in the expression of neural maturation genes. Taken together, these results suggest that microenvironmental viscoelasticity is sufficient to bias human NPC maturation.
Project description:The neural behavior of glioblastoma, including the formation of tumor microtubes and synaptic circuitry, is increasingly understood to be pivotal for disease manifestation (Osswald et al. 2015; Venkatesh et al. 2015; Weil et al. 2017; Venkataramani et al. 2019; Venkatesh et al. 2019; Alcantara Llaguno et al. 2019; Venkataramani et al. 2022). Nonetheless, the few approved treatments for glioblastoma target its oncological nature, while its neural vulnerabilities remain incompletely mapped and clinically unexploited. Here, we systematically survey the neural molecular dependencies and cellular heterogeneity across 27 glioblastoma patients and diverse model systems. In patient tumor samples taken directly after surgery, we identify a spectrum of neural stem cell morphologies indicative of poor prognosis, and discover a set of repurposable neuroactive drugs with unexpected and consistent anti-glioma efficacy. Glioblastoma cells exhibit functional dependencies on highly expressed drug targets including neurological ion channels and receptors, while interpretable molecular machine learning reveals downstream convergence on secondary drug targets (COSTAR) involving AP-1-driven tumor suppression. COSTAR enables in silico drug screening on >1 million compounds that are validated with high accuracy. Multi-omic profiling of drug-treated glioblastoma cells confirms rapid Ca2+-driven AP-1 pathway induction to represent a tumor-intrinsic vulnerability at the intersection of oncogenesis and neural activity-dependent signaling. Finally, the consistent anti-glioma activity across patients and model systems is epitomized by the antidepressant Vortioxetine, which synergizes in vivo with approved glioblastoma chemotherapies. In all, our global analysis reveals that the neural vulnerabilities of glioblastoma converge on an AP-1 mediated gene regulatory network with direct translatable potential.
Project description:Model Context: Model of neural control of cardiovascular behavior and its interaction with respiratory behavior
Primary goal of the model: The primary objective of the modeling study was to evaluate the role of neural signals in controlling the dynamic behavior of the heart, particularly in regulating cardiovascular metrics such as heart rate and blood pressure. We also seek to understand neural control of respiratory sinus arrhythmia, a natural acceleration and deceleration of heart rate in synchronization with respiration, which is characteristic of good cardiovascular health.
Our model builds on a previously developed model of neural control of the heart.1 We extended this model by integrating the “little brain of the heart”, the intrinsic cardiac nervous system (ICN), to study its contributions to cardiovascular control. This newly developed model with the ICN also integrates modeling of the cardiac phase-dependent effect of parasympathetic activity on heart rate deceleration and gating of signals in the brainstem in based on respiratory phase to represent a possible mechanism of respiratory sinus arrhythmia (RSA). Our expanded model can be utilized to explore the role of the ICN on beat-to-beat cardiovascular behavior, specifically RSA. Simulations can be performed to explore regulation of cardiovascular behavior in response to changes in lung tidal volume and electrical stimulation of the vagus nerve, which connects the brain and the heart.
Project description:ChIP-, ATAC-, and RNA-seq data Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.