Project description:The deep palmar spaces of the hand include the midpalmar space, the hypothenar space, the thenar space, space of Parona, and the interdigital web spaces. There are various communications between different spaces. These communications are of clinical importance in explaining the spread of inflammatory, infectious, and even neoplasic processes that involve this region. Surgical incision and drainage of all potentially communicating spaces and compartments is mandatory in deep hand infections. The purpose of this technical note is to describe the minimally invasive approach of endoscopic drainage and debridement of the flexor pollicis longus tendon sheath, radial bursa, and thenar space.
Project description:Background: Niemann-Pick disease type A (NPDA), a disease caused by mutations in acid sphingomyelinase (ASM), involves severe neurodegeneration and early death. Intracellular lipid accumulation and plasma membrane alterations are implicated in the pathology. ASM is also linked to the mechanism of plasma membrane repair, so we investigated the impact of ASM deficiency in skeletal muscle, a tissue that undergoes frequent cycles of injury and repair in vivo. Methods: Utilizing the NPDA/B mouse model ASM−/− and wild type (WT) littermates, we performed excitation- contraction coupling/Ca2+ mobilization and sarcolemma injury/repair assays with isolated flexor digitorum brevis fibers, proteomic analyses with quadriceps femoris, flexor digitorum brevis, and tibialis posterior muscle and in vivo tests of the contractile force (maximal isometric torque) of the quadriceps femoris muscle before and after eccentric contraction-induced muscle injury. Results: ASM−/− flexor digitorum brevis fibers showed impaired excitation-contraction coupling compared to WT, a defect expressed as reduced tetanic [Ca2+]i in response to electrical stimulation and early failure in sustaining [Ca2+]i during repeated tetanic contractions. When injured mechanically by needle passage, ASM−/− flexor digitorum brevis fibers showed susceptibility to injury similar to WT, but a reduced ability to reseal the sarcolemma. Proteomic analyses revealed changes in a small group of skeletal muscle proteins as a consequence of ASM deficiency, with downregulation of calsequestrin occurring in the three different muscles analyzed. In vivo, the loss in maximal isometric torque of WT quadriceps femoris was similar immediately after and 2 min after injury. The loss in ASM−/− mice immediately after injury was similar to WT, but was markedly larger at 2 min after injury. Conclusions: Skeletal muscle fibers from ASM−/− mice have an impairment in intracellular Ca2+ handling that results in reduced Ca2+ mobilization and a more rapid decline in peak Ca2+ transients during repeated contraction-relaxation cycles. Isolated fibers show reduced ability to repair damage to the sarcolemma, and this is associated with an exaggerated deficit in force during recovery from an in vivo eccentric contraction- induced muscle injury. Our findings uncover the possibility that skeletal muscle functional defects may play a role in the pathology of NPDA/B disease.
Project description:The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O2). Inadequate O2 bioavailability (i.e., hypoxia) is detrimental to muscle function, and in chronic cases can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O2. Using mouse models of in vivo hindlimb ischemia and ex vivo anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB) while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.
Project description:The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates poses significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing to create feedstock suitable for most industrially important microbial strains. This study explores the high ferulic acid tolerance in Lactobacillus brevis (L. brevis), a lactic acid bacteria often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis under ferulic acid stress reveals that the presence of ferulic acid primarily triggers the expression of membrane proteins to counteract ferulic acid induced changes in membrane fluidity and ion leakage, in the midst of a generalized stress response. Several promising routes for understanding phenolic acid tolerance have been identified based upon these findings. These insights may be used to guide further engineering of model industrial organisms to better tolerate phenolic compounds in processed biomass.
Project description:Cruveilhier described in 1834 the human flexor pollicis brevis (FPB), a muscle of the thenar compartment, as having a superficial and a deep head, respectively, inserted onto the radial and ulnar sesamoids of the thumb. Since then, Cruveilhier's deep head has been controversially discussed. Often this deep head is confused with Henle's "interosseous palmaris volaris" or said to be a slip of the oblique adductor pollicis. In the 1960s, Day and Napier described anatomical variations of the insertions of Cruveilhier's deep head, including its absence, and hypothesized, that the shift of the deep head's insertion from ulnar to radial facilitated "true opposability" in anthropoids. Their general thesis for muscular arrangements underlying the power and precision grip is sound, but they did not delineate their deep head from Henle's muscle or the adductor pollicis, and their description of the attachments of Cruveilhier's deep head were too vague and not supported by a significant portion of the anatomical literature. Here, we reinvestigated Cruveilhier's deep head to resolve the controversy about it and because many newer anatomy textbooks do not describe this muscle, while it is often an obvious functionally (writing, texting, precision grip) and clinically significant thenar muscle. For the first time, we empirically delineated Cruveilhier's deep head from neighboring muscles with which it was previously confused. We observed 100% occurrence of the uncontested deep head in 80 human hands, displaying a similar variability of insertions as Day and Napier, but in significantly different numbers. Furthermore, we found variability in the origin and included as important landmarks the trapezoid and the ligamentum carpi radiatum. We tested the assertion regarding the evolutionary morphology and its role in the improvements in thumb movements during various precision grips. Our overall conclusions differ with respect to the developmental and evolutionary origin of the FPB heads.
Project description:Little is understood about the roles of tendon cells during flexor tendon healing. To better understand tendon cell functions, the Scx-Cre mouse was crossed to the DTR mouse model to facilitate scleraxis lineage cell depletion prior to acute flexor tendon injury and repair. WT (cre-) and experimental (cre+) mice underwent complete transection and repair of the flexor digitorum longus tendon. Repaired tendons were harvested at 14 and 28 days post-repair for bulk RNA-Seq analysis to examine possible mechanisms driving differential healing due to Scx lineage cell depletion.
Project description:Background: The aim of flexor pollicis longus (FPL) repair is to create a construct that is strong enough to withstand forces encountered during rehabilitation and to achieve an optimal active range of motion. The aim of this study was to: (1) assess factors influencing active thumb interphalangeal (IP) joint flexion; and (2) assess the factors associated with reoperation. Methods: Retrospectively, 104 patients with primary repair of a Zone II FPL laceration from 2000 to 2016 were identified. A medical chart review was performed to collect patient-, injury-, and surgery characteristics as well as the degree of postoperative active IP-flexion and occurrence of reoperation. Bivariate analyses were performed to identify factors influencing active IP-flexion and factors associated with reoperation. Results: The reoperation rate was 17% (n = 18) at a median of 3.4 months (range: 2.3-4.4). Indications for reoperation mainly included adhesion formation (n = 10, 56%) and re-rupture (n = 5, 28%). The median range of active IP-flexion was 30° (interquartile range [IQR]: 20-45) at a median of 12.4 weeks (IQR: 8.1-16.7). Solitary injury to the thumb (β = 17.9, P = .022) and the use of epitendinous suture (β = 10.0, P = .031) were associated with increased active IP-joint flexion. No factors were statistically associated with reoperation. Conclusions: About 1 in 5 patients undergo reoperation following primary repair of a Zone II FPL laceration, mostly within 6 months of initial surgery. The use of epitendinous suture is associated with greater active IP-flexion. Patients with multiple digits injured accompanying a Zone II FPL laceration have inferior IP-joint motion.