Project description:There is a vast amount of molecular information regarding the differentiation of T lymphocytes, in particular regarding in vitro experimental treatments that modify their differentiation process. This publicly available information was used to infer the regulatory network that controls the differentiation of T lymphocytes into CD4+ and CD8+ cells. Hereby we present a network that consists of 50 nodes and 97 regulatory interactions, representing the main signaling circuits established among molecules and molecular complexes regulating the differentiation of T cells. The network was converted into a continuous dynamical system in the form of a set of coupled ordinary differential equations, and its dynamical behavior was studied. With the aid of numerical methods, nine fixed point attractors were found for the dynamical system. These attractors correspond to the activation patterns observed experimentally for the following cell types: CD4?CD8?, CD4+CD8+, CD4+ naive, Th1, Th2, Th17, Treg, CD8+ naive, and CTL. Furthermore, the model is able to describe the differentiation process from the precursor CD4?CD8? to any of the effector types due to a specific series of extracellular signals.
Project description:Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-B Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-B signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-B, giving access to possible therapy targets for SASP-accompanied diseases.
Project description:Due to the large number of diseases associated to a malfunction of the hematopoietic system, there is an interest in knowing the molecular mechanisms controlling the differentiation of blood cell lineages. However, the structure and dynamical properties of the underlying regulatory network controlling this process is not well understood. This manuscript presents a regulatory network of 81 nodes, representing several types of molecules that regulate each other during the process of lymphopoiesis. The regulatory interactions were inferred mostly from published experimental data. However, 15 out of 159 regulatory interactions are predictions arising from the present study. The network is modelled as a continuous dynamical system, in the form of a set of differential equations. The dynamical behaviour of the model describes the differentiation process from the common lymphocyte precursor (CLP) to several mature B and T cell types; namely, plasma cell (PC), cytotoxic T lymphocyte (CTL), T helper 1 (Th1), Th2, Th17, and T regulatory (Treg) cells. The model qualitatively recapitulates key cellular differentiation events, being able to represent the directional and branched nature of lymphopoiesis, going from a multipotent progenitor to fully differentiated cell types.
Project description:The Mitogen-Activated Protein Kinase (MAPK) network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision) in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR) over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3) activating mutations.
Project description:Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. In this paper we identify the allowed long-term behaviors of a multi-level, 70-node dynamic model of the stomatal opening process in plants. We start by reducing the models huge state space. We first reduce unregulated nodes and simple mediator nodes, then simplify the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Combining both methods with analysis of perturbation scenarios, we conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations of these four nodes do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. In addition, the stomatal opening level is resilient against single-node knockouts. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.
Project description:This model represents a set of generic, commonly expressed receptor signaling pathways, including EGFR, G-protein-coupled receptor (alpha i, alpha q, alpha 12/13, and alpha s ligands), integrin, and stress pathways.
Project description:Two types of distinct cardiac progenitor cell populations can be identified during early heart development: the first heart field (FHF) and second heart field (SHF) lineage that later form the mature heart. They can be characterized by differential expression of transcription and signaling factors. These regulatory factors influence each other forming a gene regulatory network. Here, we present a core gene regulatory network for early cardiac development based on published temporal and spatial expression data of genes and their interactions. This gene regulatory network was implemented in a Boolean computational model. Simulations reveal stable states within the network model, which correspond to the regulatory states of the FHF and the SHF lineages. Furthermore, we are able to reproduce the expected temporal expression patterns of early cardiac factors mimicking developmental progression. Additionally, simulations of knock-down experiments within our model resemble published phenotypes of mutant mice. Consequently, this gene regulatory network retraces the early steps and requirements of cardiogenic mesoderm determination in a way appropriate to enhance the understanding of heart development.
Project description:Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean) models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.