Project description:The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we applied single-cell RNA sequencing and proteomics to a primary cell model of human primary nasal epithelium differentiated at air-liquid interface.
Project description:To investigate the early host response triggered by three different strains of Trypanosoma cruzi at a local infection site, changes in host gene expression were monitored in a murine intradermal infection model using Affymetrix oligonucleotide arrays. Robust induction of IFN-stimulated genes (ISGs) was observed in excised skin 24 hours post-infection where the level of ISG induction was parasite strain-dependent with the least virulent strain triggering a muted IFN response. Infection of mice immunodepleted of IFNγ-producing cells or infection of IFNγ-deficient mice had minimal impact on the IFN response generated in T. cruzi infected mice. In contrast, infection of mice lacking the type I IFN receptor demonstrated that type I IFNs are largely responsible for the IFN response generated at the site of infection. These data highlight type I IFNs as important components of the innate immune response to T. cruzi the site of inoculation and their role in shaping the early transcriptional response to this pathogen. We used microarrays to detail the local host transcriptional response to intradermal T. cruzi infection in WT mice and mice depleted of NK cells, or deficient in IFN-gamma or type I IFN responses. Additionally we compared the local host-transcriptional response generated to infection with 3 different strains of Trypanosoma cruzi (Y, Brazil, and G). Keywords: disease state analysis
Project description:The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. To determine the response of ONH astrocytes in glaucoma, we studied their transcriptional response to an elevation in intraocular pressure (IOP) induced by the microbead occlusion model. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP). In this experimental model, astrocytes of the optic nerve exhibited a region-specific and temporally distinct response: ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experiment.
Project description:To investigate the early host response triggered by three different strains of Trypanosoma cruzi at a local infection site, changes in host gene expression were monitored in a murine intradermal infection model using Affymetrix oligonucleotide arrays. Robust induction of IFN-stimulated genes (ISGs) was observed in excised skin 24 hours post-infection where the level of ISG induction was parasite strain-dependent with the least virulent strain triggering a muted IFN response. Infection of mice immunodepleted of IFNγ-producing cells or infection of IFNγ-deficient mice had minimal impact on the IFN response generated in T. cruzi infected mice. In contrast, infection of mice lacking the type I IFN receptor demonstrated that type I IFNs are largely responsible for the IFN response generated at the site of infection. These data highlight type I IFNs as important components of the innate immune response to T. cruzi the site of inoculation and their role in shaping the early transcriptional response to this pathogen. We used microarrays to detail the local host transcriptional response to intradermal T. cruzi infection in WT mice and mice depleted of NK cells, or deficient in IFN-gamma or type I IFN responses. Additionally we compared the local host-transcriptional response generated to infection with 3 different strains of Trypanosoma cruzi (Y, Brazil, and G). Experiment Overall Design: Mice were infected by intradermal injection of 10^6 T. cruzi trypomastigotes in 100uL of saline split between 2 adjacent sites on the shaved side flank. Control mice were injected with an equal volume of saline. 24 hours post-injection approximately 75mm^2 of skin immediately surrounding the injection site was excised and RNA was isolated from the tissue. Balb/c mice were used for most experiments and IFN-gamma KO mice were on the Balb/c background. WT 129 mice were also used as IFNAR-/- mice were on the 129 background. In total 33 arrays were performed. 7 WT (Balb/c) control, 3 Y strain infected, 3 Brazil strain infected, 3 G strain infected, 2 IFN-gamma KO control, 2 IFN-gamma KO infected, 1 NK cell depleted control, 1 NK cell depleted infected, 3 WT (129) control, 3 WT (129) infected, 3 IFNAR KO control, 3 IFNAR KO infected
Project description:<p>We employed next-generation sequencing to identify somatic alterations in multiple metastatic sites from an "exceptional responder" lung adenocarcinoma patient during his seven year course of ERBB2-directed therapies. The degree of heterogeneity was unprecedented, with ~1% similarity between somatic alterations of the lung and lymph nodes. One novel translocation, PLAG1-ACTA2, present in both sites, up-regulated ACTA2 expression. ERBB2, the predominant driver oncogene, was amplified in both sites, more pronounced in the lung, and harbored an L869R mutation in the lymph node. Functional studies demonstrated increased proliferation, migration, metastasis, and resistance to ERBB2-directed therapy due to L869R mutation and increased migration due to ACTA2 overexpression. Within the lung, a nonfunctional CDK12, due to a novel G879V mutation, correlated with down-regulation of DNA damage response genes, causing genomic instability, and sensitivity to chemotherapy. We propose a model whereby a sub-clone metastasized early from the primary site and evolved independently in lymph nodes.</p>
Project description:We generated two mouse models of Azin1 A-to-I editing. In the first model, the editing site is locked in the edited state (AGC serine to GGC glycine). In the second model, the editing site is disrupted while preserving the codon composition (AGC serine to TCC serine). Bulk total RNA-seq was performed on kidney tissues under basal conditions and 24 hours after 20 min bilateral renal ischemia-reperfusion injury.