Proteomics

Dataset Information

0

Novel N-terminal and lysine methyltransferases that target translation elongation factor 1A in yeast and human


ABSTRACT: Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YLR285W resulted in an increase of methylation at these sites. This was confirmed by in vitro methylation of eEF1A by recombinant YLR285W. Accordingly, we name YLR285W as elongation factor methyltransferase 7 (Efm7). This enzyme is a new type of eukaryotic N-terminal methyltransferase as, unlike the three other known eukaryotic N-terminal methyltransferases, its substrate does not have an N-terminal [A/P/S]-P-K motif. We show that the N-terminal methylation of eEF1A is also present in human; this conservation over a large evolutionary distance suggests it to be of functional importance. This study also reports that the trimethylation of K79 in eEF1A is conserved from yeast to human. The methyltransferase responsible for K79 methylation of human eEF1A is shown to be N6AMT2, previously documented as a putative N(6)-adenine-specific DNA methyltransferase. It is the direct ortholog of the recently described yeast Efm5 and we show that Efm5 and N6AMT2 can methylate eEF1A from either species in vitro. We therefore rename N6AMT2 as eEF1A-KMT1. Including the present work, yeast eEF1A is now documented to be methylated by five different methyltransferases, making it one of the few eukaryotic proteins to be extensively methylated by independent enzymes. This implies more extensive regulation of eEF1A by this post-translational modification than previously appreciated.

INSTRUMENT(S): LTQ Orbitrap Velos, Q Exactive

ORGANISM(S): Homo Sapiens (human) Saccharomyces Cerevisiae (baker's Yeast)

SUBMITTER: Joshua Hamey  

LAB HEAD: Marc Ronald Wilkins

PROVIDER: PXD002941 | Pride | 2015-11-10

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
EF1A_from_overexpressed_Efm7_lysate_1ul.dat Other
EF1A_from_overexpressed_Efm7_lysate_1ul.raw Raw
EF1A_metassay_Efm5_1ul.dat Other
EF1A_metassay_Efm5_1ul.raw Raw
WT_EF1A_AspN_1ul.dat Other
Items per page:
1 - 5 of 14
altmetric image

Publications

Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human.

Hamey Joshua J JJ   Winter Daniel L DL   Winter Daniel L DL   Yagoub Daniel D   Overall Christopher M CM   Hart-Smith Gene G   Wilkins Marc R MR  

Molecular & cellular proteomics : MCP 20151106 1


Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here, we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YL  ...[more]

Similar Datasets

2024-01-03 | PXD042599 | Pride
2017-07-03 | PXD005497 | Pride
2020-08-07 | PXD016813 | Pride
2018-07-04 | GSE104033 | GEO
2020-12-15 | PXD021214 | Pride
2023-07-03 | PXD042540 | Pride
2018-09-03 | PXD009515 | Pride
2020-01-27 | PXD000606 | Pride
2017-01-05 | GSE93133 | GEO
2024-01-16 | GSE221651 | GEO