Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation
Ontology highlight
ABSTRACT: Petal senescence is a complex programmed process. It has been previously demonstrated that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on post-translational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome, ubiquitylome, and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 hours after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2-fold change >1 and FDR<0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P<0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunias. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in ER-associated degradation (ERAD).
INSTRUMENT(S): Q Exactive
ORGANISM(S): Petunia Hybrida (petunia)
TISSUE(S): Plant Cell, Flower
SUBMITTER: Jones Macke
LAB HEAD: Yixun Yu
PROVIDER: PXD005457 | Pride | 2020-03-20
REPOSITORIES: Pride
ACCESS DATA