Proteomics

Dataset Information

0

REPARATION: Ribosome Profiling Assisted (Re-) Annotation of Bacterial genomes


ABSTRACT: Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated techniques depend heavily on sequence context and often underestimate the complexity of the proteome. We developed REPARATION (RibosomeE Profiling Assisted (Re-)AnnotaTION), a de novo algorithm that takes advantage of experimental evidence from ribosome profiling (Ribo-seq) to delineate translated open reading frames (ORFs) in bacteria, independent of genome annotation. Ribo-seq next generation sequencing technique that provides a genome-wide snapshot of the position translating ribosome along an mRNA at the time of the experiment. REPARATION evaluates all possible ORFs in the genome and estimates minimum thresholds to screen for spurious ORFs based on a growth curve model. We applied REPARATION to three annotated bacterial species to obtain a more comprehensive mapping of their translation landscape in support of experimental data. In all cases, we identified hundreds of novel ORFs including variants of previously annotated and novel small ORFs (<71 codons). Our predictions were supported by matching mass spectrometry (MS) proteomics data and sequence conservation analysis. REPARATION is unique in that it makes use of experimental Ribo-seq data to perform de novo ORF delineation in bacterial genomes, and thus can identify putative coding ORFs irrespective of the sequence context of the reading frame.

INSTRUMENT(S): Q Exactive

ORGANISM(S): Salmonella Enterica Subsp. Enterica Serovar Typhimurium Str. Sl1344

SUBMITTER: Petra Van Damme  

LAB HEAD: Petra Van Damme

PROVIDER: PXD005844 | Pride | 2017-08-09

REPOSITORIES: Pride

Dataset's files

Source:
altmetric image

Publications

REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes.

Ndah Elvis E   Jonckheere Veronique V   Giess Adam A   Valen Eivind E   Menschaert Gerben G   Van Damme Petra P  

Nucleic acids research 20171101 20


Prokaryotic genome annotation is highly dependent on automated methods, as manual curation cannot keep up with the exponential growth of sequenced genomes. Current automated methods depend heavily on sequence composition and often underestimate the complexity of the proteome. We developed RibosomeE Profiling Assisted (re-)AnnotaTION (REPARATION), a de novo machine learning algorithm that takes advantage of experimental protein synthesis evidence from ribosome profiling (Ribo-seq) to delineate tr  ...[more]

Similar Datasets

2020-10-13 | PXD016377 | Pride
2017-08-03 | PXD005901 | Pride
2015-12-11 | E-GEOD-67947 | biostudies-arrayexpress
2012-05-31 | E-GEOD-38353 | biostudies-arrayexpress
2019-07-05 | GSE124962 | GEO
2017-01-30 | GSE91066 | GEO
2010-05-18 | E-GEOD-17246 | biostudies-arrayexpress
2015-07-30 | E-GEOD-59945 | biostudies-arrayexpress
2010-06-20 | E-GEOD-18428 | biostudies-arrayexpress
2017-05-03 | PXD003589 | Pride