Uncovering the metabolic pleiotropy of FMR1-deficiency in Fragile X Syndrome
Ontology highlight
ABSTRACT: ene pleiotropy defines the capacity of a gene to impact multiple phenotypic characters. The Fragile X Mental Retardation 1 (FMR1) gene is a candidate for pleiotropy, as it controls protein synthesis through its product, the translational regulator FMRP. As FMR1 loss-of-function leads to neurodevelopmental defects and Fragile X Syndrome (FXS), intellectual disability and autism, FMR1 functions have been mostly studied in the brain. FMR1-deficiency could also have yet unexplored consequences in periphery and impact metabolism through translational repression in peripheral organs. We combined 1H NMR-based metabolic phenotyping and proteomics to reveal the pleiotropic metabolic effects associated with FMR1-deficiency in mouse and human. We demonstrate that Fmr1-deficiency in the mouse increases hepatic translation, improves glucose tolerance and insulin sensitivity and reduces adiposity, while enhancing -adrenergic driven lipolysis and utilization of lipid energetic substrates. Last, we provide converging evidences in FXS patients that the levels of glucose, insulin and free fatty acids are modified, suggesting that FMR1-deficiency also drives metabolic readjustments in human. As part of a larger study investigating the involvement of fmr in metabolic alteration in fmr1-KO mice, fmr1-KO mouse livers were analysed by MS.
INSTRUMENT(S): LTQ Orbitrap Elite
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Liver
DISEASE(S): Neurological Dysfunction
SUBMITTER: Tariq Ganief
LAB HEAD: Boris Macek
PROVIDER: PXD007241 | Pride | 2022-02-28
REPOSITORIES: pride
ACCESS DATA