Nitric Oxide Enhances Resistance to PEG-induced Water Deficiency is Associated with the Primary Photosynthesis Reaction in Triticum aestivum L.
Ontology highlight
ABSTRACT: Photosynthesis is affected by water deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates the excitation energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using isobaric tags for relative and absolute quantitation. Differentially phosphorylated protein species (DEPs) were identified in leaves of NO or polyethylene glycol (PEG)-treated wheat seedlings (D) and in control seedlings, 2,257 unique phosphorylated peptides and 2,416 phosphorylation sites were identified from 1,396 unique phosphoproteins. Of these, 96 DEPs displayed significant changes (≥ 1.50-fold, p < 0.01). These DEPs are involved in photosynthesis and signal transduction, etc. Furthermore, phosphorylation of several DEPs were up-regulated by both D and NO treatments, but down-regulated only in NO treatment. These differences affected the chlorophyll A-B binding protein, chloroplast post-illumination chlorophyll fluorescence increase protein, and SNT7, implying that NO indirectly regulated the absorption and transport of light energy in photosynthesis in response to WD stress. The significant difference of chlorophyll (Chl) content, Chl a fluorescence transient, photosynthesis index, and trapping and transport of light energy further indicated that exogenous NO under D stress enhanced the primary reaction of photosynthesis compared to D treatment. A putative pathway is proposed to elucidate NO regulation of the primary reaction of photosynthesis under WD.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Triticum Aestivum (wheat)
TISSUE(S): Stem Cell, Leaf
SUBMITTER: Ruixin Shao
LAB HEAD: Shao Ruixin
PROVIDER: PXD010724 | Pride | 2019-11-14
REPOSITORIES: Pride
ACCESS DATA