Metaproteomes of phototrophic mats from four soda lakes found in the Cariboo Plateau region of British Columbia, Canada
Ontology highlight
ABSTRACT: In this study we used metaproteomics to discern the metabolism and physiology of the microorganisms occurring in the phototrophic mats of four soda lakes in the interior of British Columbia, Canada. Binned and assembled metagenomes were used as the database for protein identification.
Project description:This data is a case study done in the context of developing methods for assessing the taxonomic composition of microbial communities using metaproteomics. For this study with analyzed phototrophic biomats from two Soda Lakes in the Canadian Rocky Mountains using metaproteomics. For protein identification we generated a metagenome from which we predicted and annotated the protein sequences used to analyze the metaproteomes. The database is available in this PRIDE submission. Lake1 refers to Goodenough Lake (GEM, 51°19'47.64"N 121°38'28.90"W) and Lake2 referes to Last Chance Lake (LCM, 51°19'39.3" N 121°37'59.3"W).
Project description:In this work we used metaproteomics to study the effect of pH and nitrogen source on cyanobacterial growth of the laboratory cultures. The database for protein identification was obtained from assembled metagenomes.
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.
Project description:In this work we used stable isotope probing/proteomics to study uptake of carbon sources by members of the cyanobacterial consortium. The database for protein identification was obtained from assembled metagenomes.
Project description:This dataset is part of a study aimed at developing algorithms for the quantification of stable isotope content in microorganisms in microbial communities after labeling them with stable isotope-labeled substrates. For this dataset Escherichia coli cultures were labeled with different percentages (1, 5 and 10%) of fully labeled 13C glucose (13C1-6) and spiked-in into a mock microbial community consisting of 32 species of bacteria, archaea, eukaryote and bacteriophages (UNEVEN Community described in Kleiner et al. 2017 Nat Communications 8(1):1558). The community also contained unlabeled E. coli cells and labeled/unlabeled E. coli cells in the spike-in sample were at a 1:1 ratio. Cultures of E. coli were grown in M9 minimal medium in which a percentage of the glucose was replaced with 13C1-6 glucose for >10 generations to achieve close to complete labeling of cells. The following percentages of 13C1-6 glucose were added 1, 5 and 10%. Triplicate cultures were grown for each percentage. Please note that the unlabeled glucose that was used of course had a natural content of 13C of around 1.1%, thus the 0% added label samples have an actual 13C content of 1.1% and all added label is on top of this value. We included a tab delimited table with this submission providing details on all raw files.
Project description:We developed a method that allows measuring the stable carbon isotope composition of individual species in microbial communities using metaproteomics. We call this methods “Direct Protein-SIF”. To benchmark this method, we measured twenty pure culture species using the Direct Protein-SIF method as well as Isotope Ratio Mass Spectrometry. Some of the pure cultures were measured in technical replicates to see how consistent Protein-SIF measurements are between mass spec runs. This submission thus contains 29 raw files for the pure cultures. See table in the submission for details of which species was measured for which .raw file. We also included the Direct Protein-SIF specific isotope pattern files as well as the .mzML files and PSM files required as input for the Direct Protein-SIF software. In addition to the pure culture a protein reference material (MKH files) was measured. The respective .raw files and isotopic pattern files are also included in this submission (see publication for details on how the reference material is used to calibrate the method).
Project description:Assessment of diet currently relies on self-reporting, such as food logs, 24 hour recalls and food frequency questionnaires. Self-reporting of diet is inaccurate due to memory lapses, lying and biased language. A molecular-based approach to assess diet would allow accurate reporting of diet for researchers, medical professionals and patients. We performed metaproteomic analysis of five human stool samples collected from a free-eating individual over five consecutive days (25Jun18-29Jun18). The free-eating individual maintained a food log during the sample collection period. We used these samples to develop a molecular-based approach for assessing diet.
Project description:Bathymodiolus childressi is a species of deep-sea mussels found predominantly in the Gulf of Mexico. It colonizes cold seeps such as brine pool and oil seeps. The success of these animals in such environment is thought to be due to the symbiotic association of the mussel host with several species of bacteria. The aim of this study is to understand the role of the different partners involved in the symbiotic system using various “-omics” approaches. In addition to protein identification we used the mass spectrometry data generated and submitted with this project to derive the stable carbon isotope ratios for the different members of the symbiosis using the direct Protein-SIF method. The respective isotope pattern file and SIF computation files are included with this submission.
Project description:The Lucinidae is a large family of marine bivalves. They occur in diverse habitats from shallow-water seagrass sediments to deep-sea hydrothermal vents. All members of this family so far investigated host intracellular sulfur-oxidizing symbionts that belong to the Gammaproteobacteria. We recently discovered the capability for nitrogen fixation in draft genomes of the symbionts of Loripes lucinalis from the Bay of Fetovaia, Elba, Italy. With proteomics, we investigated whether the genes for nitrogen fixation are expressed by the symbionts.
Project description:The goal of this study was to optimize protein extraction methods to study root-associated bacteria in maize. For this we inoculated sterile maize plants with a synthetic community composed of seven different bacteria (Ben Niu et al. PNAS 2017, vol 114, n 12). Then, we extracted proteins from maize roots using eight different protein extraction methods in triplicates. These methods were a combination of different extraction buffers (SDS or Triton-based) and mechanical disruption methods (bead-beating, N2 grinding, glass homogenizer and freeze-thaw cycles). We found that vortexing maize roots with glass beads in PBS yielded the highest numbers of microbial protein identification.