Project description:Complex microbial communities can be characterized by metagenomics and metaproteomics. However, metagenome assemblies often generate enormous, and yet incomplete, protein databases, which undermines the identification of peptides and proteins in metaproteomics. This challenge calls for increased discrimination of target identifications from decoy identifications by database searching and filtering algorithms in metaproteomics. Sipros Ensemble was developed here for metaproteomics using an ensemble approach to addressing this challenge.
Project description:To unravel complex dynamics of environmental disturbance and microbial metabolic activities, we set up laboratory microcosms to investigate the effects of SO42- and O2 alone or in combination on microbial activities and interactions, as well as the resulting fate of carbon within wetland soil. We used proteogenomics to characterize the biochemical and physiological responses of microbial communities to individual perturbations and their combined effects. Stoichiometric models were employed to deconvolute carbon exchanges among the main functional guilds. These findings can contribute to the development of mechanistic models for predicting greenhouse gas emissions from wetland ecosystems under various climate change scenarios.
Project description:Evaluation of different strategies to interpret metaproteomics data acquired on soil samples from a floodplain along the Seine River (France) incorporating sample-specific metagenomics data, soil genome catalogue database, and generic sequence database.