Proteomic analysis of Rhizobium favelukesii LPU83 in response to acid stress.
Ontology highlight
ABSTRACT: Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobia-legume interactions. Rhizobium favelukesii—an acid-tolerant rhizobium able to nodulate alfalfa—is highly competitive for nodule occupation under acid conditions, but inefficient in biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in-silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to γ-aminobutyric-acid metabolism, such as the gene product of livK, which was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both γ-aminobutyric-acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Rhizobium Favelukesii
SUBMITTER: Juliet Nilsson
LAB HEAD: Mariano Pistorio
PROVIDER: PXD013642 | Pride | 2022-04-08
REPOSITORIES: Pride
ACCESS DATA