Quantitative proteomics of maize roots treated with a novel protein hydrolase: comparative study with transcriptomics highlights the molecular mechanisms responsive to biostimulants
Ontology highlight
ABSTRACT: Protein hydrolysates (PHs) - based biostimulants offer a cost-effective, and sustainable approach for the regulation of physiological processes in plants to stimulate growth, and improve stress tolerance. Understanding the mode of action of PHs is challenging however, it is indispensable to improve existing candidates and to develop novel molecules with enhanced stimulatory effects. Hence, the present study aimed to understand the proteome level responses in the B73 maize roots treated with APR® at two increasing concentrations and to compare and integrate it with the transcriptomic data obtained previously under identical experimental conditions. Results indicate APR® induced dose-dependent global changes in the transcriptome and proteome of maize roots. APR® treatment altered the expression and abundance of several genes and proteins related to redox homeostasis, stress response, glycolysis, tricarboxylic acid cycle, pentose phosphate pathway and other metabolic pathways of carbohydrates, amino acids, and lipids. Further, metabolic processes of phytohormone, secondary metabolites especially phenylpropanoids, flavonoids, and terpenoids and transport, and cytoskeletal reorganization associated mechanisms were stimulated. Our results suggest that APR® treatment altered the redox homeostasis and thus triggered an oxidative signal. This could be one of the key regulators of the cascade of downstream events involving multiple signaling, hormonal, and metabolic pathways, resulting in an altered physiological and metabolic state which consequently could lead to improved growth, and stress adaptation observed in biostimulant - treated plants.
INSTRUMENT(S): LTQ Orbitrap
ORGANISM(S): Zea Mays (maize)
TISSUE(S): Root
SUBMITTER: Giorgio Arrigoni
LAB HEAD: Giorgio Arrigoni
PROVIDER: PXD017781 | Pride | 2020-11-16
REPOSITORIES: Pride
ACCESS DATA