Proteomics

Dataset Information

0

New mixture models for decoy-free false discovery rate estimation in mass-spectrometry proteomics


ABSTRACT: We introduce a new decoy-free framework for false discovery rate (FDR) estimation that generalizes present decoy-free approaches (DFAs) while exploiting more search data in a manner similar to target-decoy approaches (TDAs).

INSTRUMENT(S): Orbitrap Fusion Lumos

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Hela Cell

SUBMITTER: Michal Gregus  

LAB HEAD: Alexander R. Ivanov

PROVIDER: PXD020322 | Pride | 2020-01-10

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
01ngHeLa_01.raw Raw
01ngHeLa_02.raw Raw
01ngHeLa_03.raw Raw
100ngHeLa_01.raw Raw
100ngHeLa_02.raw Raw
Items per page:
1 - 5 of 20
altmetric image

Publications

New mixture models for decoy-free false discovery rate estimation in mass spectrometry proteomics.

Peng Yisu Y   Jain Shantanu S   Li Yong Fuga YF   Greguš Michal M   Ivanov Alexander R AR   Vitek Olga O   Radivojac Predrag P  

Bioinformatics (Oxford, England) 20201201 Suppl_2


<h4>Motivation</h4>Accurate estimation of false discovery rate (FDR) of spectral identification is a central problem in mass spectrometry-based proteomics. Over the past two decades, target-decoy approaches (TDAs) and decoy-free approaches (DFAs) have been widely used to estimate FDR. TDAs use a database of decoy species to faithfully model score distributions of incorrect peptide-spectrum matches (PSMs). DFAs, on the other hand, fit two-component mixture models to learn the parameters of correc  ...[more]

Similar Datasets

| S-EPMC7773488 | biostudies-literature
2012-08-23 | E-GEOD-39572 | biostudies-arrayexpress
| S-EPMC6708216 | biostudies-literature
2012-08-23 | GSE39572 | GEO
| S-EPMC6252074 | biostudies-literature
| S-EPMC3076744 | biostudies-literature
2012-12-31 | E-GEOD-35170 | biostudies-arrayexpress
2022-06-09 | PXD028840 | Pride
| S-EPMC3820951 | biostudies-literature
2019-02-14 | GSE126503 | GEO