ErbB2 drives Yap activation during cardiac regeneration
Ontology highlight
ABSTRACT: Cardiomyocyte (CM) loss after injury results in adverse remodelling and fibrosis, which inevitably lead to heart failure. Neuregulin-ErbB2 and Hippo-Yap signaling pathways are key mediators of CM proliferation and regeneration although the crosstalk between these pathways is unclear. Here, we demonstrate in mice that temporal over-expression (OE) of activated ErbB2 in CMs promotes cardiac regeneration in a heart failure model. Cellularly, OE CMs present an EMT-like regenerative response involving cytoskeletal reprograming, migration, ECM turnover, and displacement. Molecularly, we identified Yap as a critical mediator of ErbB2 signaling. In OE CMs, Yap interacts with nuclear envelope and cytoskeletal components, reflective of the altered mechanic state elicited by ErbB2. Hippo-independent activating phosphorylation on Yap at S352 and S274 were enriched in OE CMs, peaking during metaphase. Viral overexpression of Yap phospho-mutants dampened the proliferative competence of OE CMs. Taken together, we demonstrate a potent ErbB2-mediated Yap mechanosensory signaling involving EMT-like characteristics, resulting in heart regeneration.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Heart
DISEASE(S): Myocardial Ischemia
SUBMITTER: Alon Savidor
LAB HEAD: Eldad Tzahor
PROVIDER: PXD020731 | Pride | 2020-08-21
REPOSITORIES: Pride
ACCESS DATA