Oryza sativa cv. Nipponbare and Oryza barthii as unexpected tolerance and susceptibility sources against Schizotetranychus oryzae (Acari: Tetranychidae) mite infestation
Ontology highlight
ABSTRACT: Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to observe the response of two wild rice species (Oryza barthii and O. glaberrima) and two O. sativa genotypes (cv. Nipponbare and f. spontanea) to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, chlorophyll concentration and fluorescence showed that the wild species present higher level of leaf damage, increased accumulation of H2O2 and lower photosynthetic capacity when compared to O. sativa genotypes under infested conditions. Infestation decreased tiller number, except in Nipponbare. Infestation also caused the death of wild plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa genotypes, the number of panicles per plant was affected only in f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) genotypes under control and infested conditions. O. barthii has a less abundant antioxidant arsenal and is unable to modulate proteins involved with general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes and energy production, suggesting that, under infested condition, the primary metabolism is maintained more active compared to O. barthii. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors. These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming increased tolerance to mite infestation.
INSTRUMENT(S): SYNAPT G2-Si
ORGANISM(S): Oryza Barthii Oryza Sativa (rice)
TISSUE(S): Plant Cell, Leaf
SUBMITTER: Raul Sperotto
LAB HEAD: Raul Antonio Sperotto
PROVIDER: PXD020940 | Pride | 2021-09-09
REPOSITORIES: pride
ACCESS DATA