Orphan nuclear receptor COUP-TFII enhances myofibroblasts glycolysis leading to kidney fibrosis
Ontology highlight
ABSTRACT: Recent studies demonstrated that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts induced augmented glycolysis and production of alpha smooth muscle actin (αSMA) and collagen1. Knockout of COUP-TFII decreased glycolysis and collagen1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
INSTRUMENT(S): Orbitrap Fusion Lumos
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Skin, Fibroblast
DISEASE(S): Renal Fibrosis
SUBMITTER: Marian Kalocsay
LAB HEAD: Li Li
PROVIDER: PXD024035 | Pride | 2021-04-27
REPOSITORIES: Pride
ACCESS DATA