A Metaproteomic Workflow for Sample Preparation and Data Analysis Applied to Mouse Faeces: 5
Ontology highlight
ABSTRACT: The intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behaviour. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomic is well suited for analysis of individual microbes, metaproteomic of faecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of species. Furthermore, there is a lack of consensus regarding preparation of faecal samples, as well as downstream bioinformatic analyses following metaproteomic data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse faeces in a typical LC-MS/MS metaproteomic experiment. We show that low speed centrifugation (LSC) of faecal samples leads to high protein identification rates but possibly enriched for a subset of taxa. During database search, two-step search strategies led to dramatic and underestimated accumulation of false positive protein identifications. Regarding taxonomic annotation, the MS-identified peptides of unknown origin were annotated with highest sensitivity and specificity using the Unipept software. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomic when studying complex microbiome samples.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Archaea Bacteria Viruses Eukaryota (eucaryotes)
SUBMITTER: Nicolas Nalpas
LAB HEAD: Prof. Dr. Boris Macek
PROVIDER: PXD027306 | Pride | 2022-02-17
REPOSITORIES: Pride
ACCESS DATA