Sulfamethoxazole triggers specific microbial activities under aerobic heterotrophic conditions: A metaproteomic approach
Ontology highlight
ABSTRACT: The global sanitary crisis derived from antibiotic multi-resistant bacteria entails the need to reduce sulfamethoxazole (SMX) concentrations in wastewater treatment plants (WWTPs). The key microorganisms and the biotransformation mechanisms leading to SMX removal remain incompletely characterized, particularly under aerobic heterotrophic conditions, which are becoming increasingly relevant in the design of novel, more energy-efficient, WWTPs. In this study, sequential batch reactors were inoculated with activated sludge, operated in heterotrophic conditions and spiked with six different initial SMX concentrations ranging between 0 and 2000 µg L-1. The goal was to determine the influence of SMX in the microbiome and its enzymatic expression through genomic, metaproteomic and transformation product analyses. The results allowed us to identify the metabolite 2,4(1H,3H)-pteridinedione-SMX (PtO-SMX), pointing to the role of the pterin-conjugation pathway in the biotransformation of SMX. Additionally, at increased SMX concentrations, through metaproteomics and 16S rRNA gene sequencing, it was determined a higher abundance of the genus Corynebacterium and a differential expression of five enzymes involved in its central metabolism, suggesting the relevant role of this bacteria to mitigate SMX risks.
INSTRUMENT(S): timsTOF Pro
ORGANISM(S): Environmental Samples <g-proteobacteria Environmental Samples <b-proteobacteria
SUBMITTER: Valentina Calamia
LAB HEAD: Alba Trueba Santiso
PROVIDER: PXD029711 | Pride | 2022-09-20
REPOSITORIES: Pride
ACCESS DATA