Campylobacter jejuni virulence factors identified by modulating their sCampylobacter jejuni virulence factors identified by modulating their synthesis on ribosomes with altered rRNA methylationynthesis on ribosomes with altered rRNA methylation
Ontology highlight
ABSTRACT: Campylobacter jejuni is a major cause of food poisoning worldwide, and remains the main infective agent in gastroenteritis and related intestinal disorders in Europe and the USA. As with all bacterial infections, the stages of adhesion to host tissue, survival in the host and eliciting disease all require the synthesis of proteinaceous virulence factors on the ribosomes of the pathogen. Here, we describe how C. jejuni virulence is attenuated by altering the methylation of its ribosomes to disrupt the composition of its proteome, and how this in turn provides a means of identifying factors that are essential for infection and pathogenesis. Specifically, inactivation of the C. jejuni Cj0588/TlyA methyltransferase prevents methylation of nucleotide C1920 in the 23S rRNA of its ribosomes and reduces the pathogen’s ability to form biofilms, to attach, invade and survive in host cells, and to provoke the innate immune response. Mass spectrometric analyses of C. jejuni TlyA-minus strains revealed an array of subtle changes in the proteome composition. These included reduced amounts of the cytolethal distending toxin (CdtC) and the MlaEFD proteins connected with outer membrane vesicle (OMV) production. Inactivation of the cdtC and mlaEFD genes confirms the importance of the toxin and OMVs in establishing infection. Collectively, the data identify a collection of genes required for the onset of human campylobacteriosis, and serve as a proof of principle for use of this approach in detecting proteins involved in bacterial pathogenesis.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Campylobacter Jejuni Subsp. Jejuni Bacteria
TISSUE(S): Cell Culture
DISEASE(S): Diarrhea
SUBMITTER: Agnieszka Sałamaszyńska-Guz
LAB HEAD: Agnieszka Sałamaszyńska-Guz
PROVIDER: PXD030125 | Pride | 2022-01-26
REPOSITORIES: Pride
ACCESS DATA