Guanosine-7 tRNA methylation steers tRNA-derived fragment biogenesis and translational control in prostate cancer
Ontology highlight
ABSTRACT: Transfer RNAs (tRNAs) are exceptionally subject to modifications, including methylation. While mRNA methylation is emerging as an important regulator of biological and pathological processes in cancer, how post-transcriptional methylation of tRNAs contributes to cancer is largely unknown. Here we show that the RNA N7-methylguanosine (m7G) methyltransferase METTL1 is highly differentially expressed in prostate cancer compared to non-tumour prostate tissues. METTL1 expression regulation is mediated under the oncogenic PI3K-PTEN pathway. Knockdown of METTL1 dramatically inhibits prostate cancer cell growth and tumour progression in vivo. In contrast, overexpression of the wild type but not the catalytically inactive METTL1 potentiates cell growth. Thus, METTL1-mediated methylation is important for prostate tumorigenesis. Mechanistically we find that METTL1 depletion causes loss of m7G tRNA methylation and increases endonucleolytic cleavage of tRNA leading to an accumulation of 5′ tRNA-derived small RNA fragments. 5′ tRNA-derived fragments steer translation control to favour synthesis of key regulators of tumour growth suppression and immune rejection. In summary, our findings uncover a critical function of m7G tRNA methylation in directing translation control in cancer cells with important implications for tumour growth and unveil METTL1 inhibition as a promising anti-cancer therapeutic strategy.
INSTRUMENT(S): timsTOF Pro
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Prostate Gland
DISEASE(S): Prostate Carcinoma
SUBMITTER: Mikel Azkargorta
LAB HEAD: Felix Elortza
PROVIDER: PXD030141 | Pride | 2023-10-24
REPOSITORIES: Pride
ACCESS DATA