Proteomics

Dataset Information

0

PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production


ABSTRACT: Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2-M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/ expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.

INSTRUMENT(S): Q Exactive HF

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Stomach

SUBMITTER: Dennis Kappei  

LAB HEAD: Dennis Kappei

PROVIDER: PXD031110 | Pride | 2022-03-08

REPOSITORIES: Pride

altmetric image

Publications

PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production.

Srinivas Upadhyayula S US   Tay Norbert S C NSC   Jaynes Patrick P   Anbuselvan Akshaya A   Ramachandran Gokula K GK   Wardyn Joanna D JD   Hoppe Michal M MM   Hoang Phuong Mai PM   Peng Yanfen Y   Lim Sherlly S   Lee May Yin MY   Peethala Praveen C PC   An Omer O   Shendre Akshay A   Tan Bryce W Q BWQ   Jemimah Sherlyn S   Lakshmanan Manikandan M   Hu Longyu L   Jakhar Rekha R   Sachaphibulkij Karishma K   Lim Lina H K LHK   Pervaiz Shazib S   Crasta Karen K   Yang Henry H   Tan Patrick P   Liang Chao C   Ho Lena L   Khanchandani Vartika V   Kappei Dennis D   Yong Wei Peng WP   Tan David S P DSP   Bordi Matteo M   Campello Silvia S   Tam Wai Leong WL   Frezza Christian C   Jeyasekharan Anand D AD  

Oncogene 20220302 13


Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functi  ...[more]

Similar Datasets

2024-06-14 | GSE264686 | GEO
2022-07-06 | GSE193942 | GEO
| PRJNA798434 | ENA
2024-12-09 | MSV000096625 | MassIVE
2024-11-01 | PXD053933 | Pride
2024-11-26 | GSE278081 | GEO
2024-11-26 | GSE278083 | GEO
2024-11-26 | GSE278082 | GEO
2020-04-14 | PXD017898 | Pride
2018-03-09 | MSV000082147 | MassIVE