Complementary gene regulation by NRF1 and NRF2 safeguard hepatic cholesterol detoxification
Ontology highlight
ABSTRACT: Metabolic-associated steatohepatitis is a progressive fatty liver disease caused, in part, by hepatocyte stress linked to cholesterol overload. Counteracting this stress may be beneficial but there is insufficient understanding of underlying stress defenses to develop a therapeutic strategy. Here, we aimed to elucidate how stress-adaptive transcription factors, nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2), counteract hepatic cholesterol overload and determine whether they function cooperatively. C57bl/6 mice were fed high fat, fructose, and cholesterol diet (HFFC). Expression profiling and phenotypic analyses were done on liver of mice with adult-onset and hepatocyte-specific deficiency of NRF1, NRF2, or both, and results compared to control. Chromatin immunoprecipitation (ChIP) sequencing was done and combined with expression profiles to identify genes that NRF1 and NRF2 interact with and regulate in vivo. Three weeks HFFC diet feeding to mice with NRF1 and NRF2 deficiency caused severe steatohepatitis and increased hepatic cholesterol storage. These outcomes did not occur in single gene-deficient mice or control. Expression profiling at a time preceding hepatic cholesterol overload and ChIP sequencing profiling revealed complementary gene regulation by NRF1 and NRF2 to promote cholesterol excretion and mitigate hazardous metabolic biproducts generated from converting cholesterol to bile acid. Consequently, combined gene deficiency, and not single-gene deficiency, increased liver oxidized protein level, decreased cholesterol in bile, and increased unconjugated bile acid in liver and bile. We discover, for the first time, that NRF1 and NRF2 work together to protect liver against damaging effects of excess cholesterol. Targeting these combined actions may prove an effective therapeutic strategy
INSTRUMENT(S): LTQ Orbitrap Elite
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Liver
SUBMITTER: Sadhna Phanse
LAB HEAD: Scott B. Widenmaier
PROVIDER: PXD032069 | Pride | 2023-03-22
REPOSITORIES: Pride
ACCESS DATA