Proteomics

Dataset Information

0

A comprehensive SARS-CoV-2-human protein-protein interactome network that can identify pathobiology and host-targeting therapies for COVID-19


ABSTRACT: Physical interactions between viral and host proteins are responsible for almost all aspects of the viral life cycle and the host’s immune response. Studying viral-host protein-protein interactions is thus crucial for identifying strategies for treatment and prevention of viral infection. Here, we use high-throughput yeast two-hybrid and affinity purification followed by mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of both binary and co-complex interactions. We report a total of 739 high-confidence interactions, showing the highest overlap of interaction partners among published datasets as well as the highest overlap with genes differentially expressed in samples (such as upper airway and bronchial epithelial cells) from patients with SARS-CoV-2 infection. Showcasing the utility of our network, we describe a novel interaction between the viral accessory protein ORF3a and the host zinc finger transcription factor ZNF579 to illustrate a SARS-CoV-2 factor mediating a direct impact on host transcription. Leveraging our interactome, we performed network-based drug screens for over 2,900 FDA-approved/investigational drugs and obtained a curated list of 23 drugs that had significant network proximities to SARS-CoV-2 host factors, one of which, carvedilol, showed promising antiviral properties. We performed electronic health record-based validation using two independent large-scale, longitudinal COVID-19 patient databases and found that carvedilol usage was associated with a significantly lowered probability (17%-20%, P < 0.001) of obtaining a SARS-CoV-2 positive test after adjusting various confounding factors. Carvedilol additionally showed anti-viral activity against SARS-CoV-2 in a human lung epithelial cell line [(half maximal effective concentration (EC 50 ) value of 4.1 µM]), suggesting a mechanism for its beneficial effect in COVID-19. Our study demonstrates the value of large-scale network systems biology approaches for extracting biological insight from complex biological processes.

INSTRUMENT(S): Orbitrap Fusion Lumos

ORGANISM(S): Homo Sapiens (human) Severe Acute Respiratory Syndrome Coronavirus 2

TISSUE(S): Cell Culture

SUBMITTER: Shagun Gupta  

LAB HEAD: Haiyuan Yu

PROVIDER: PXD035805 | Pride | 2023-03-11

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
CACO2-M-ORF3A-1.raw Raw
CACO2-M-ORF3A-1.xlsx Xlsx
CACO2-M-ORF3A-2.raw Raw
CACO2-M-ORF3A-2.xlsx Xlsx
CACO2-M-ORF3A-3.raw Raw
Items per page:
1 - 5 of 284
altmetric image

Publications


Studying viral-host protein-protein interactions can facilitate the discovery of therapies for viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of 739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners between published datasets  ...[more]

Similar Datasets

2023-05-25 | E-MTAB-13028 | biostudies-arrayexpress
2021-05-29 | GSE171382 | GEO
2022-01-21 | GSE183999 | GEO
2022-02-05 | E-MTAB-10740 | biostudies-arrayexpress
2021-02-19 | ST001709 | MetabolomicsWorkbench
2020-03-25 | GSE147507 | GEO
2021-04-27 | GSE167075 | GEO
2022-03-09 | GSE173507 | GEO
2022-03-09 | GSE173498 | GEO
2022-03-31 | GSE198899 | GEO