Physiological shear stress markedly alters the proteomic response to hypoxia in human pulmonary microvascular endothelial cells
Ontology highlight
ABSTRACT: Physiological shear stress, produced by blood flow, homeostatically regulates the phenotype of pulmonary endothelial cells exerting anti-inflammatory and anti-thrombotic actions and maintaining normal barrier function. In the pulmonary circulation hypoxia, due to high altitude or diseases such as COPD, causes vasoconstriction, increased vascular resistance and pulmonary hypertension. Hypoxia-induced changes in endothelial function play a central role in the development of this pulmonary hypertension. However, the direct interactive effects of hypoxia and shear stress on the pulmonary endothelial phenotype have not been extensively studied. We cultured human pulmonary microvascular endothelial cells (HPMEC) in normoxia or hypoxia while subjected to physiological shear stress or in static conditions. Unbiased proteomics was used to identify hypoxia-induced changes in protein expression. Using publicly available single cell RNA-seq datasets, differences in gene expression between the alveolar endothelial cells from COPD and healthy lungs were identified. 60 proteins were identified in HPMEC lysates whose expression changed in response to hypoxia in sheared but not in static conditions. mRNA for five of these (ERG, MCRIP1, EIF4A2, HSP90AA1 and DNAJA1) showed similar changes in the endothelial cells of COPD compared to healthy lungs. These data show that the proteomic responses of the pulmonary microvascular endothelium to hypoxia are significantly altered by shear stress and suggest that these differences are important in the development of hypoxic pulmonary vascular disease.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Pulmonary Capillary Endothelial Cell
DISEASE(S): Chronic Obstructive Pulmonary Disease
SUBMITTER:
Eugene Dillon
LAB HEAD: Paul McLoughlin
PROVIDER: PXD036260 | Pride | 2023-02-17
REPOSITORIES: Pride
ACCESS DATA