Proteomics

Dataset Information

0

A Lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins


ABSTRACT: Acute lysosomal membrane damage reduces the cellular population of functional lysosomes. However, these damaged lysosomes have a remarkable recovery potential independent of lysosomal biogenesis and remain unaffected in TFEB/TFE3-depleted cells. We combined proximity labelling based proteomics, biochemistry and high-resolution microscopy to unravel a new lysosomal membrane regeneration pathway which is dependent on ATG8, lysosomal membrane protein LIMP2, the Rab7 GAP TBC1D15, and proteins required for autophagic lysosomal reformation (ALR) including Dynamin2, Kinesin5B and Clathrin. Upon lysosomal damage, LIMP2 act as a lysophagy receptor to bind ATG8, which in turn recruits TBC1D15 to damaged membranes. TBC1D15 hydrolyses Rab7-GTP to segregate the damaged lysosomal mass and provides a scaffold to assemble and stabilize the ALR machinery, potentiating the formation of lysosomal tubulesand subsequent Dynamin2-dependent scission. TBC1D15-mediated lysosome regeneration was also observed in a cell culture model of oxalate nephropathy.

INSTRUMENT(S): Orbitrap Fusion Lumos, Q Exactive HF

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Cell Culture

SUBMITTER: Anshu Bhattacharya  

LAB HEAD: Ivan Dikic

PROVIDER: PXD040191 | Pride | 2023-03-07

REPOSITORIES: Pride

Dataset's files

Source:

Similar Datasets

2021-09-23 | PXD027476 | Pride
2022-09-07 | PXD028852 | Pride
2023-07-31 | E-MTAB-13165 | biostudies-arrayexpress
2020-10-29 | PXD021444 | Pride
2024-01-31 | GSE226743 | GEO
| MSV000088152 | MassIVE
2024-06-12 | GSE240323 | GEO
2022-06-23 | PXD032903 | Pride
2020-02-29 | GSE136894 | GEO
2024-01-04 | MSV000093768 | MassIVE