Proteomic-based computational stratification of intermediate-risk prostate cancer patients.
Ontology highlight
ABSTRACT: Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in Gleason Grade Groups (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or over-treatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign samples from 278 patients. Three proteins (F5, TMEM126B and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomise prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.
INSTRUMENT(S): TripleTOF 6600
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Prostate Gland
DISEASE(S): Prostate Adenocarcinoma
SUBMITTER: Zainab Noor
LAB HEAD: Qing Zhong
PROVIDER: PXD041005 | Pride | 2023-11-30
REPOSITORIES: pride
ACCESS DATA