Proteomics

Dataset Information

0

Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pathway analysis


ABSTRACT: The incorporation of machine learning methods into proteomics workflows improves the identification of disease-relevant biomarkers and biological pathways. However, machine learning models, such as deep neural networks, typically suffer from lack of interpretability. Here, we present a deep learning approach to combine biological pathway analysis and biomarker identification to increase the interpretability of proteomics experiments. Our approach integrates a priori knowledge of the relationships between proteins and biological pathways and biological processes into sparse neural networks to create biologically informed neural networks. We employ these networks to differentiate between clinical subphenotypes of septic acute kidney injury and COVID-19, as well as acute respiratory distress syndrome of different aetiologies. To gain biological insight into the complex syndromes, we utilize feature attribution-methods to introspect the networks for the identification of proteins and pathways important for distinguishing between subtypes. The algorithms are implemented in a freely available open source Python-package (https://github.com/InfectionMedicineProteomics/BINN).

INSTRUMENT(S): Q Exactive HF

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): Blood Plasma

SUBMITTER: Erik Hartman  

LAB HEAD: Johan Malmström

PROVIDER: PXD044264 | Pride | 2023-09-05

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
CK_P1912_146.raw Raw
CK_P1912_147.raw Raw
CK_P1912_148.raw Raw
CK_P1912_150.raw Raw
CK_P1912_151.raw Raw
Items per page:
1 - 5 of 59

Similar Datasets

2023-07-20 | PXD038394 | Pride
2023-07-20 | PXD038377 | Pride
2023-02-06 | PXD029625 | Pride
2010-05-16 | E-GEOD-16465 | biostudies-arrayexpress
2024-03-04 | PXD050003 | Pride
2011-11-19 | E-MEXP-3001 | biostudies-arrayexpress
2024-03-15 | PXD040500 | Pride
2022-03-25 | PXD029900 | Pride
2020-11-24 | PXD020722 | Pride
2015-08-03 | E-GEOD-67645 | biostudies-arrayexpress