Proteomics

Dataset Information

0

Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Binding Dynamics of EGFR-Directed Drugs


ABSTRACT: Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-targets, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of drug selectivity and efficacy. In this study, we further refined the site-specific activity-based protein profiling strategy, PhosID-ABPP, on a timsTOF Pro mass spectrometer. This refinement enables dose-dependent competition of inhibitors within a single cellular proteome. Here, a comparative analysis of two activity-based probes (ABPs), developed to selectively target the epidermal growth factor receptor (EGFR), namely PF-06672131 and PF-6422899, facilitated the simultaneous identification of ABP-specific binding sites at a proteome-wide scale within a cellular proteome. Dose-dependent probe-binding preferences for proteinaceous cysteines, even at low nanomolar ABP concentrations, could be revealed. Notably, while both ABPs showed comparable affinities for the EGFR, PF-06672131 had a broader off-target reactivity profile. In contrast, PF-6422899 exhibited higher affinity for the ERBB2 receptor and bound to catalytic cysteines in several other enzymes, which is likely to disrupt their catalytic activity. Notably, PF-06672131 also effectively labeled ADP/ATP translocase proteins at a concentration of just 1 nanomolar. Additionally, analysis of different binding sites within the EGF receptor and the voltage-dependent anion channel 2 revealed secondary binding sites of both probes and provided insights into the binding poses of inhibitors on these proteins. Insights from the PhosID-ABPP analysis of these two ABPs serve as a valuable resource for understanding drug on- and off-target engagement in a dose- and site-specific manner.

INSTRUMENT(S): timsTOF Pro

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): A-549 Cell, A-431 Cell

SUBMITTER: Wouter van Bergen  

LAB HEAD: Albert J.R. Heck

PROVIDER: PXD045864 | Pride | 2024-10-17

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
Content_description.xlsx Xlsx
Dual_probe_analysis_raw.zip Other
Homo_sapiens_Swissprot.fasta Fasta
Optimization_raw.zip Other
Searches.zip Other
Items per page:
1 - 5 of 6
altmetric image

Publications

Dual-Probe Activity-Based Protein Profiling Reveals Site-Specific Differences in Protein Binding of EGFR-Directed Drugs.

van Bergen Wouter W   Žuna Kristina K   Fiala Jan J   Pohl Elena E EE   Heck Albert J R AJR   Baggelaar Marc P MP  

ACS chemical biology 20240725 8


Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-target interactions, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of the drug selectivity and efficacy. In this  ...[more]

Similar Datasets

2023-01-10 | PXD036569 | Pride
2024-01-03 | PXD035417 | Pride
2022-08-11 | PXD018644 | Pride
2024-05-22 | PXD044792 | Pride
2014-08-31 | E-MTAB-2510 | biostudies-arrayexpress
2011-11-09 | E-GEOD-33562 | biostudies-arrayexpress
2018-05-18 | PXD009450 | Pride
2016-12-26 | E-MTAB-4135 | biostudies-arrayexpress
2016-12-26 | E-MTAB-4139 | biostudies-arrayexpress
2009-01-13 | E-GEOD-9861 | biostudies-arrayexpress