Palmitate grown bioreactor sludge metaproteome
Ontology highlight
ABSTRACT: A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.
INSTRUMENT(S): Dionex instrument model
ORGANISM(S): Bioreactor Sludge Metagenome Cellular Organisms
TISSUE(S): Prokaryotic Cell
SUBMITTER: João Sequeira
LAB HEAD: Joao Carlos Sequeira
PROVIDER: PXD047715 | Pride | 2024-05-03
REPOSITORIES: Pride
ACCESS DATA