Cysteinylation of peroxiredoxin 2 upon incubation with BODIPY® FL L-Cystine
Ontology highlight
ABSTRACT: It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteostatic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knock-out mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionary conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice and humans.
INSTRUMENT(S): Q Exactive HF
ORGANISM(S): Homo Sapiens (human)
SUBMITTER: Luz Valero
LAB HEAD: Juan Sastre
PROVIDER: PXD050368 | Pride | 2024-05-10
REPOSITORIES: Pride
ACCESS DATA