ABSTRACT: In this study, to better understand the mechanisms of the profound impact of alcohol consumption on drug pharmacokinetics, efficacy, and toxicity, we characterized the alcohol-induced changes in the ensemble of drug-metabolizing enzymes and transporters (DMETs) in the human liver by performing global proteomic analysis of human liver microsomes from 94 donors. DMET protein levels were analyzed concerning alcohol consumption, smoking history, and sex using non-parametric tests, which were further strengthened by correlational analysis. To this end, we used a provisional index of alcohol exposure formulated based on the relative abundances of four marker proteins best correlating with the level of alcohol consumption. Alcohol-induced changes in the cytochrome P450 pool include significant increases in CYP2E1, CYP2B6, CYP2J2, and NADPH-cytochrome P450 reductase levels and the lowering of CYP1A2, CYP2C8, CYP2C9, CYP4A11, and cytochrome b5. Changes in UDP-glucuronosyltransferase (UGT) abundances comprise elevated UGT1A6, UGT1A9, and UGT2A1, and reduced UGT1A3, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 levels. Tobacco smokers showed elevated CYP1A2, UGT1A6, and UGT2B4 and reduced FMO3, FMO4, and FMO5 levels, while in females, CYP1A2, UGT2B17, and UGT2B15 levels were lower, and UGT2A3 and STS were higher compared to males. The alcohol-induced changes in the DMET ensemble at the protein level reported herein provide deep insights into how alcohol impacts drug and xenobiotic metabolism.