Project description:Emerging and neglected diseases pose challenges as their biology is frequently poorly understood, and genetic tools often do not exist to manipulate the responsible pathogen. Organism agnostic sequencing technologies offer a promising approach to understand the molecular processes underlying these diseases. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium and the causative agent of the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning, we investigated the transcriptional architecture of Ot, including operon structure and non-coding RNAs, and found evidence for wide-spread post-transcriptional antisense regulation. We compared the host response to two clinical isolates and identified distinct immune response networks that are up-regulated in response to each strain, leading to predictions of relative virulence which were confirmed in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.
Project description:Scrub typhus is a life-threatening disease caused by Orientia tsutsugamushi, a bacterium that mainly infects endothelial cells in vitro and in vivo. Evidence suggests that the interaction of O. tsutsugamushi with myeloid cells may play a pivotal role in O. tsutsugamushi infection. We showed here that O. tsutsugamushi intensively replicated within human monocyte-derived macrophages. Bacterial organisms stimulated the expression of a large panel of genes including type I interferon, interferon-stimulated, inflammatory, apoptosis-related genes and induced an M1-type gene response in macrophages. This transcriptional signature was accompanied by functional consequences such as the release of inflammatory cytokines such as Tumor Necrosis Factor and interleukin-gamma. Live O. tsutsugamushi organisms were necessary for type I interferon response and, to a lesser degree, to inflammatory response. As interferon-gamma is known to elicit M1 polarization, we assessed the effect of interferon-gamma on O. tsutsugamushi fate in macrophages. Exogenous interferon-gamma partly inhibited O. tsutsugamushi replication within macrophages. Our results suggest that the inflammatory response induced by O. tsutsugamushi may account for the local and systemic inflammation observed in scrub typhus and that interferon-gamma may be useful as an adjuvant treatment of patients with scrub typhus.
Project description:Scrub typhus is a life-threatening disease caused by Orientia tsutsugamushi, a bacterium that mainly infects endothelial cells in vitro and in vivo. Evidence suggests that the interaction of O. tsutsugamushi with myeloid cells may play a pivotal role in O. tsutsugamushi infection. We showed here that O. tsutsugamushi intensively replicated within human monocyte-derived macrophages. Bacterial organisms stimulated the expression of a large panel of genes including type I interferon, interferon-stimulated, inflammatory, apoptosis-related genes and induced an M1-type gene response in macrophages. This transcriptional signature was accompanied by functional consequences such as the release of inflammatory cytokines such as Tumor Necrosis Factor and interleukin-gamma. Live O. tsutsugamushi organisms were necessary for type I interferon response and, to a lesser degree, to inflammatory response. As interferon-gamma is known to elicit M1 polarization, we assessed the effect of interferon-gamma on O. tsutsugamushi fate in macrophages. Exogenous interferon-gamma partly inhibited O. tsutsugamushi replication within macrophages. Our results suggest that the inflammatory response induced by O. tsutsugamushi may account for the local and systemic inflammation observed in scrub typhus and that interferon-gamma may be useful as an adjuvant treatment of patients with scrub typhus. Macrophages (4 M-CM-^W 10.5 cells per assay) were incubated with O. tsutsugamushi at a bacterium-to-cell ratio of 20:1 for 8 hours. RNA samples (four samples per experimental condition) were processed for microarray analysis.
Project description:Scrub typhus also known as bush typhus is a disease with symptoms similar to Chikungunya infection. It is caused by a gram-negative bacterium Orientia tsutsugamushi which resides in its vertebrate host, Mites. The genome of Orientia tsutsugamushi str. Karp encodes for 1,563 proteins, of which 344 are characterized as hypothetical ones. In the present study, we tried to identify the probable functions of these 344 hypothetical proteins (HPs). All the characterized hypothetical proteins (HPs) belong to the various protein classes like enzymes, transporters, binding proteins, metabolic process and catalytic activity and kinase activity. These hypothetical proteins (HPs) were further analyzed for virulence factors with 62 proteins identified as the most virulent proteins among these hypothetical proteins (HPs). In addition, we studied the protein sequence similarity network for visualizing functional trends across protein superfamilies from the context of sequence similarity and it shows great potential for generating testable hypotheses about protein structure-function relationships. Furthermore, we calculated toplogical properties of the network and found them to obey network power law distributions showing a fractal nature. We also identifed two highly interconnected modules in the main network which contained five hub proteins (KJV55465, KJV56211, KJV57212, KJV57203 and KJV57216) having 1.0 clustering coefficient. The structural modeling (2D and 3D structure) of these five hub proteins was carried out and the catalytic site essential for its functioning was analyzed. The outcome of the present study may facilitate a better understanding of the mechanism of virulence, pathogenesis, adaptability to host and up-to-date annotations will make unknown genes easy to identify and target for experimentation. The information on the functional attributes and virulence characteristic of these hypothetical proteins (HPs) are envisaged to facilitate effective development of novel antibacterial drug targets of Orientia tsutsugamushi.