Project description:Within this work we identified and characterized gene Bmul_2557 (ldhR) of B. multivorans ATCC 17616, a bacterial species associated with chronic respiratory infections in cystic fibrosis patients. LdhR belongs to the LysR-type family of transcriptional regulators and its deletion from the B. multivorans genome affected considerably the formation of planktonic cellular aggregates and surface-attached biofilms.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.
Project description:The gene expression of the opportunictic cystic fibrosis lung pathogen Burkholderia multivorans ATCC 17616 was investigated under different growth conditions relevant for growth in the cystic fibrosis lung.
Project description:Burkholderia cepacia complex (Bcc) comprises opportunistic bacteria infecting hosts such as cystic fibrosis (CF) patients. Bcc long-term infection of CF patient airways has been associated with emergence of phenotypic variation. Here we studied two Burkholderia multivorans clonal isolates (D2095 and D2214) displaying different morphotypes from a chronically infected CF patient in order to evaluate traits development during lung infection.
Project description:An efficient and quantitative method to analyze the transposition of various insertion sequence (IS) elements in Burkholderia multivorans ATCC 17616 was devised. pGEN500, a plasmid carrying a Bacillus subtilis-derived sacB gene, was introduced into ATCC 17616 cells, and 25% of their sucrose-resistant derivatives were found to carry various IS elements on pGEN500. A PCR-based experimental protocol, in which a mixture of several specific primer pairs was used, revealed that pGEN500 captured, in addition to five previously reported IS elements (IS401, IS402, IS406, IS407, and IS408), three novel IS elements, ISBmu1, ISBmu2, and ISBmu3. The global transposition frequency of these IS elements was enhanced more than sevenfold under a high-temperature condition (42 degrees C) but not under oxidative stress or starvation conditions. To our knowledge, this is the first report demonstrating the elevated transposition activities of several IS elements at a high temperature. The efficient experimental protocol developed in this study will be useful in quantitatively and simultaneously investigating various IS elements, as well as in capturing novel functional mobile elements from a wide variety of bacteria.