Project description:Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of Mu50 was achieved by sequentially introducing mutations into five genes of a vancomycin-susceptible S. aureus (VSSA) strain ∆IP. Introduction of mutation Ser329Leu into vraS encoding the sensor histidine kinase of vraSR two-component regulatory (TCR) system and another mutation Glu146Lys into msrR, encoding putative methionine sulfoxide reductase regulator, raised vancomycin resistance to the level of heterogeneously vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, graR (Asn197Ser) of graSR TCR system and rpoB(His481Tyr) encoding ß subunit of RNA polymerase, converted the hVISA strain into a VISA strain having the level of vancomycin resistance of Mu50. Surprisingly, however, the constructed quadruple mutant strain did not have thickened cell wall, a cardinal feature of VISA phenotype. Subsequent study showed that cell-wall thickening was an inducible phenotype with the mutant strain as opposed to that of Mu50, which is a constitutive one. Finally, introduction of mutation Ala297Val into the orf SAV2309 of the mutant strain converted the inducible cell-wall thickening into a constitutive one. SAV2309 encodes a putative formate dehydrogenase (designated Fdh2). Though not a transcription regulator, the mutation of the fdh2 caused a significant change in transcriptome. Thus, all of the five mutated genes required for VISA phenotype acquisition were directly or indirectly involved in the regulation of cell physiology. VISA seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology.
Project description:To determine if significant genomic changes are associated with the development of vancomycin intermediate Staphylococcus aureus, genomic DNA microarrays were performed to compare the initial vancomycin susceptible Staphylococcus aureus (VSSA) and a related vancomycin intermediate Staphylococcus aureus (VISA) isolate from five unique patients (five isolate pairs). Keywords: comparative genomic hybridization
Project description:Investigation of mRNA expression level changes in a Staphylococcus aureus Mu50 delta-SAV1322 mutant, compared to the wild-type strain. A comparison of the wild-type and the mutant transcription profiles
Project description:WalKR is an essential two component regulatory system in S. aureus, thought to control cell wall metabolism. Using genome sequencing of 5 paired clinical isolates of vancomycin-susceptible and vancomycin-intermediate S. aureus we found frequent, but unique, mutations in this locus. To investigate the contribution of these mutations to vancomycin resistance allelic replacement WalK (G223D) and WalR (K208R) mutants were generated and compared to the parent strains. Mutations in walk and walR led to increased vancomycin resistance, reduced biofilms formation and attenuation of virulence, demonstrating that minor genetic changes in this locus can lead to significant changes in bacterial resistance and virulence. Microarray transcriptional comparisons were performed to investigate the regulatory effects of the WalK (G223D) and WalR (K208R) mutations, and demonstrated that while changes in genes affecting cell wall metabolism were detected, more dramatic changes were found in regulation of cellular metabolism.
Project description:Eight vancomycin-tolerized strains were selected for transcriptional analysis, along with their pre-evolved counterparts (wild type and one media-adapted strain per medium type).
Project description:Cervimycins A‒D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug resistant staphylococci and vancomycin resistant enterococci. To initiate mode of action studies, we selected cervimycin C and D resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Proteomic analysis revealed massive alterations in CmR-02 (amino acid exchanges: ClpP-I29F, DnaK-A112P, WalK-A243V) compared to the parent strain S. aureus SG511 Berlin, with major modifications in the heat shock regulon, the metal ion homeostasis and the carbohydrate metabolism. These effects were alleviated in the antibiotic susceptible suppressor mutant 02REV (amino acid exchanges: ClpP-I29F/M31I, WalK-A243V/S191L).