Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:Although the biodegradation of biodegradable plastics in soil and compost is well-studied, there is little knowledge on the metabolic mechanisms of synthetic polymers degradation by marine microorganisms. Here, we present a multiomics study to elucidate the biodegradation mechanism of a commercial aromatic-aliphatic copolyester film by a marine microbial enrichment culture. The plastic film and each monomer can be used as sole carbon source. Our analysis showed that the consortium synergistically degrades the polymer, different degradation steps being performed by different members of the community. Analysis of gene expression and translation profiles revealed that the relevant degradation processes in the marine consortium are closely related to poly(ethylene terephthalate) biodegradation from terrestrial microbes. Although there are multiple genes and organisms with the potential to perform a degradation step, only a few of these are active during biodegradation. Our results elucidate the potential of marine microorganisms to mineralize biodegradable plastic polymers and describe the mechanisms of labor division within the community to get maximum energetic yield from a complex synthetic substrate.
Project description:Marine is one of the most important resources of microorganisms, including bacteria, actinomycetes, and fungi. As marine and terrestrial environments differ a lot in many aspects it is not surprising that the species and characteristics of microorganisms living there are very different. Interestingly, many marine microorganisms can find their congeners of the same species from terrestrial resources. The aim of this work is to evaluate the intraspecies differences between marine and terrestrial actinomycetes on metabolic level and to uncover the mechanism responsible for the differences. To address this, we carried out comparative metabolomics study on Nesterenkonia flava strains isolated from marine and terrestrial environments. The results showed that marine strains were clearly distinguished from their terrestrial congeners on the principal components analysis (PCA) scores plot of intracellular metabolites. The markers responsible for the discrimination of marine and terrestrial strains were figured out using loading plot from partial least squares discrimination analysis (PLS-DA). Pathway analysis based on PLS-DA, univariate analysis, and correlation analysis of metabolites showed that the major differential metabolites between the terrestrial N. flava and the marine ones were involved in osmotic regulation, redox balancing, and energy metabolism. Together, these insights provide clues as to how the previous living environment of microbes affect their current metabolic performances under laboratory cultivation conditions.