Project description:Investigation of whole genome gene expression level changes in a Gluconacetobacter xylinus NBRC 3288 delta-fnrG mutant, compared to the wild-type strain.
Project description:Purpose:The goals of this study are to clarify the B. subtilis NBRC 16449 response to soybeans. Methods: B. subtilis NBRC 16449 cells were aerobically cultured in liquid LB, LB solidified with agar, or on surface of boiled soybeans to logarithmic growth phase. Total RNAs were extracted from bacterial cells by Hot-Phenol method. Samples for RNA-seq were prepared according to Illmina protocol available from the manufacture. The sequence reads that passed quality filters were analyzed at the transcript isoform level with bowtie v0.11.2. Results: Using an optimized data analysis workflow, we mapped around 15 million sequence reads per sample to the whole genome of B. subtilis BEST195 and identified 4271 transcripts in B. subtilis NBRC 16449 with Bowtie aligner. Read count per genome was extracted from known gene annotations with HTSeq program. Compared the transcriptomes of B. subtilis NBRC 16449 grown on LB solidified with agar to that grown on surface of boiled soybeans, about 5% of genes showed the different expression levels.
Project description:The tertiary branched short-chain 2-hydroxyisobutyric acid (2-HIBA) has been associated with several metabolic diseases and lysine 2-hydroxyisobutyrylation seems to be a common eukaryotic as well as prokaryotic post-translational modification in proteins. In contrast, the underlying 2-HIBA metabolism has thus far only been detected in a few microorganisms, such as the betaproteobacterium Aquincola tertiaricarbonis L108 and the Bacillus group bacterium Kyrpidia tusciae DSM 2912. In these strains, 2-HIBA can be specifically activated to the corresponding CoA thioester by the 2-HIBA-CoA ligase HCL and is then isomerized to 3-hydroxybutyryl-CoA in a reversible and B12-dependent mutase reaction. Here, we demonstrate that the actinobacterial strain Actinomycetospora chiangmaiensis DSM 45062 degrades 2-HIBA and also its precursor 2-methylpropane-1,2-diol via acetone and formic acid by employing a thiamine pyrophosphate-dependent lyase. The corresponding gene is located directly upstream of hcl, which has previously been found only in operonic association with the 2-hydroxyisobutyryl-CoA mutase genes in other bacteria. Heterologous expression of the lyase gene from DSM 45062 in E. coli established a 2-hydroxyisobutyryl-CoA lyase activity in the latter. In line with this, analysis of the DSM 45062 proteome reveals a strong induction of the lyase-HCL gene cluster on 2-HIBA. Acetone is likely degraded via hydroxylation to acetol catalyzed by a MimABCD-related binuclear iron monooxygenase and formic acid appears to be oxidized to CO2 by selenium-dependent dehydrogenases. The presence of the lyase-HCL gene cluster in isoprene-degrading Rhodococcus strains and Pseudonocardia associated with tropical leafcutter ant species points to a role in degradation of biogenic volatile organic compounds.